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Crossing our paths with Louis:

Paris 7 (71-75): Louis advisor for my “second thesis” (also called

“proposition donnée par la faculté”)

Grenoble (77-79): colleagues at Institut Fourier

American Academy of Arts and Sciences (2012): Louis elected

Collaboration on a paper (2012): arXiv:1209.5165 [math-ph]
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The action of pseudo-differential operators on functions har-

monic outside a smooth hyper-surface [Louis Boutet De Monvel

(IMJ), Yves Colin De Verdière (IF) (Submitted on 24 Sep 2012)]

We consider a smooth hyper-surface Z of a closed Riemannian manifold X.

Let P be the Poisson operator associating to a smooth function on Z its

harmonic extension on X \ Z. If A is a pseudo-differential operator on X of

degree < 3, we prove that B = P ∗AP is a pseudo-differential operator on Z

and calculate the principal symbol of B.

3



Le 28 juin 2012

Boutet de Monvel Louis <louis.boutet-de-monvel@orange.fr> a écrit:

Cher Yves,

merci de tes mels. Je suis loin d’être le principal auteur, mais

je serais quand même très content de cosigner cette note - comme

ça, ça fera au moins un papier cosigné, en 35 ans ! Je prends

quand même un ou deux jours de plus pour relire la deuxième version.

Amitiés, Louis
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Sub-Riemannian (sR) Laplacians are self-adjoint hypo-elliptic

operators “à la Hörmander” on which Louis contributed a lot.

Works in the seventies and the eighties by many people.

One of our main objectives while starting this work was to get

Quantum Ergodicity results for sR Laplacians and more generally

to understand the link between their spectral asymptotics and

some classical dynamics (not always the geodesic flow).
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We succeeded for 3D contact distributions: the relevant dynam-

ics is then the associated Reeb vector field.

I will also present some results for some generic singularities of

the distribution (Grushin and Martinet singularities). As far as

we know, Weyl asymptotics were not known in these cases. We

show that most eigenfunctions do concentrate on the singular

set.
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Topics.–

• Sub-Riemannian Laplacians

• Weyl measures

• Quantum limits and Quantum ergodicity

• The 3D contact case

• Singular cases: Grushin and Martinet.
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Sub-Riemannian Laplacians.–

sR Laplacians are locally given by

∆ =
l∑

m=1

X?
mXm

where the family of vector fields (Xm) satisfies the Hörmander

bracket generating condition: the iterated brackets of the vector

fields (Xm) generate the tangent space.
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A more global and intrinsic definition is

• X a smooth compact connected manifold of dimension d with

a smooth measure µ

• A smooth linear bundle map j from a vector bundle E on

X into TX satisfying the bracket generating condition (the

iterated brackets of images of sections of E generate TX)

• A smooth metric g on E.

To these data is associated a finite distance using the lengths of

“horizontal” paths, ie tangent to j(E).
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We do not assume that E is a sub-bundle of TX (see Grushin

case).

The distribution is called equi-regular if E is a sub-bundle of

TX and, defining E = E1 ⊂ E2 ⊂ · · ·Er = TX with Er = Er−1 +

[E,Er−1], each Ej is a sub-bundle of TX. In this case Q0 =

dimE1 + 2 dim(E2/E1) + · · · is the Hausdorff dimension of X for

the sR distance.
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We define the sR Laplacian ∆g,µ as the self-adjoint operator on

L2(X,µ) which is the Friedrichs extension of the closure of the

quadratic form D(f) :=
∫
X ‖df‖2gdµ where ‖df‖g is the g−norm of

d(f ◦ j).
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Locally, if (e1, e2, · · · , el) is a local orthonormal frame for (E, g),

∆g,µ = X?
1X1 +X?

2X2 + · · ·
where the vector fields Xm’s are the images of the em’s by j and
the adjoints are taken w.r. to µ.

The principal symbol of ∆g,µ is the co-metric g? defined by
g?(x, ξ) = ‖ξ ◦ j‖2gx. The sR Laplacians are not elliptic at the
points where jx is not surjective. The characteristic manifold
Σ ⊂ T ?X is the orthogonal of j(E). The sub-principal symbol
vanishes and different choices of µ give operators unitarily equiv-
alent up to a bounded operator. The main spectral asymptotics
depends only of the metric.

It follows from Hörmander’s Theorem that ∆g,µ is sub-elliptic
and has a compact resolvent, hence a discrete spectrum and a
spectral decomposition (φn, λn). We are interested in spectral
asymptotics for sR Laplacians ∆g,µ.
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Link with magnetic fields.–

(M,h) is a closed Riemannian manifold and X →M is a S1-bundle

with a connection ∇. The sR distribution E is the horizontal

space of ∇ and g is the pull-back of h on E. The curvature

B ∈ Ω2(M) of ∇ is the magnetic field.

The sR laplacian on X commutes with the S1 action. Using

Fourier expansion allows a decomposition ∆sR = ⊕n∈Z∆n where

∆n is a Schrödinger operator on M with magnetic field nB.
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If M is of dimension 2, transverse vanishing of B along a curve

Y corresponds to a Martinet singularity in X. This was first

observed by Richard Montgomery and leads him to the discovery

of existence of singular geodesics, i.e. geodesics which are not

projections of integral curves of the Hamiltonian vector field.
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If M is of dimension 3 and B is non vanishing, the corresponding

sR structure is equi-regular in dimension 4 and is called quasi-

contact. Magnetic lines are projections of the singular geodesics.

QE in this case could possibly come from the ergodicity of the

magnetic vector field.
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Weyl measures.–

If ∆ is an operator with compact resolvent and N(λ) := #{λn ≤
λ} the spectral counting function, we define (if they exist!) the
Weyl (probability) measures as follows:

The local Weyl measure dw∆ on X∫
X
fdw∆ = lim

λ→∞
1

N(λ)

∑
λn≤λ

∫
X
f |φn|2dµ

The micro-local Weyl measure dW∆ on the co-sphere bun-
dle S?X ∫

S?X
adW∆ = lim

λ→∞
1

N(λ)

∑
λn≤λ

〈Op(a)φn|φn〉

where Op(a) is any ΨDO of degree 0 with principal symbol a.

If p : S?X → X is the projection, p?dW∆ = dw∆.
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The microlocal Weyl measure is related to the average correla-

tion of the eigenfunctions: if, locally,

C(x, y) = lim
λ→∞

1

N(λ)

∑
λn≤λ

φn(x+ y/2)φ̄n(x− y/2),

using Weyl quantization, one gets that the correlation is the

Fourier transform w.r. to ξ of the microlocal Weyl density:

C(x, y) =
∫
Rd
e−iξy

dW∆(x, ξ)

dx
.
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General facts:

• The measures dw∆ and dW∆ depend only of (E, j, g) and not

of µ. dW∆ is invariant by the involution (x, ξ)→ (x,−ξ).

• In the equi-regular case, dw∆ is smooth and is in general

distinct from the normalized Hausdorff measure (U. Boscain

and al. proved that the Hausdorff measure is not smooth in

general in the contact case for d ≥ 5).

• dW∆ is supported by SΣ (and even by S
(
E0
r−1

)
in the equi-

regular case)
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• The Weyl measure is often supported by the set where more

brackets are needed (Grushin and Martinet cases) and hence

can be singular w.r. to µ.

• If QE holds, the limit measure is dW∆.

If support(dw∆) = K ⊂ X, then almost all eigenfunctions

concentrate on K:
∫
X f |φnj |2dµ→ 0 if support(f)∩K = ∅ for

a density 1 subsequence.



Q(uantum)L(limits) and Q(uantum)E(rgodicity).–

A probability measure ν on S?X is called a Q(uantum)L(imit)

if there exists a sequence of eigenfunctions φnj with nj → ∞ so

that

lim
j→∞

〈Aφnj |φnj〉 =
∫
S?X

adν

for any ΨDO A of degree 0 with principal symbol a.
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We say that the eigen-basis (φn)n∈N satisfies QE if there exists

a density one sub-sequence (λnj) of (λn) so that

lim
j→∞

〈Aφnj |φnj〉 =
∫
S?X

adW∆

for any ΨDO A of degree 0 with principal symbol a.

Density 1 means that

lim
λ→∞

#{λnj ≤ λ}
N(λ)

= 1 .
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The historical example of QE is due to A. Shnirelman (74’)

(proved later by Zelditch, YCdV).–

If (X, g) is a closed Riemannian manifold whose geodesic

flow is ergodic, QE holds for any eigen-basis of the Laplace-

Beltrami operator with ν the normalized Riemannian vol-

ume. This applies in particular if the curvature of (X, g) is < 0.
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This result has been extended to many cases: manifolds with

boundaries, discontinuous metrics, semi-classical Schrödinger op-

erators, large regular graphs. To our knowledge, nothing was

known before our work in the sR case.
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Path to QE Theorems.–

One needs to determine the microlocal Weyl measure and to get

a vanishing Theorem for the variance: if
∫
S?X adW∆ = 0, then

Var∆(A) := lim
λ→∞

1

N(λ)

∑
λn≤λ

|〈Aφn|φn〉|2 = 0 .

Usually the vanishing of the variance comes from ergodicity as-

sumptions for a suitable dynamics preserving dW∆.
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QL and QE in the 3D contact case.–

Let us start with a 3D closed manifold X with a smooth measure

µ and an oriented contact distribution, i.e. E = kerα with α∧dα
non vanishing. Let us give a smooth sR metric g on E. There

exists a unique contact form β so that dβ(e1, e2) = 1 for any

positive orthonormal frame (e1, e2) of E for g. Let us denote

by Z the Reeb vector field of β (i.e. β(Z) = 1, dβ(Z, .) = 0).

Then the Popp measure dP = |β ∧ dβ| is Z−invariant. The Weyl

formula reads

N(λ) ∼
∫
X dP

32
λ2 .
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The Weyl measure is dw∆ = 1∫
X dP

dP . Let us denote by Σ the

symplectic sub-cone of T ?X generated by α. The sphere bundle

SΣ is a two-fold covering of X and and dW∆ is one half of the

pull back on SΣ of dw∆.
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An Hamiltonian interpretation of Z.–

r : Σ → R is the positively homogeneous function with value 1

on ±β, the Hamiltonian vector field Xr on Σ projects onto the

Reeb vector field ±Z.
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Our results are the following [ArXiv 2015]:

Theorem 1 If the dynamics of the Reeb vector field Z is

ergodic for the Popp volume, QE holds for any real eigen-

basis of the sR Laplacians ∆g,µ

Theorem 2 No assumption on the dynamics. Any QL ν

splits ν = ν0 + ν1 where

• ν0 is supported by SΣ and invariant under the Reeb

vector field

• ν1(SΣ) = 0 and ν1 is invariant under the sR geodesic

flow
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Example: X is the unit cotangent bundle of a 2D closed Rieman-

nian manifold (M,h), E = kerα with α the Liouville form. Then

we can choose g so that the Reeb vector field is the geodesic

flow of (M,h).

Question: in this case, what is the link of our result and Shnirelman’s

Theorem? Work in progress if M is an hyperbolic surface with

Joachim Hilgert and Tobias Weich.

30



Main intuition: The Reeb dynamics and the geodesics

All sR geodesics in T ?X with Cauchy data (x0, ξ0+τα(x0)) ∈ T ?X
with τ ∈ R have the same Cauchy data in TX. As τ → ±∞, they

spiral around the trajectories of ±Z. Reeb trajectories are C0

limits of geodesics.
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More precisely, we use a Birkhoff normal form along Σ already

discussed by Melrose [84]. It has the following simple form

∆ ≡ R⊗Ω +OΣ(∞)

along Σ where

• R is a Toeplitz elliptic operator of degree 1 associated to

the symplectic cone Σ whose principal symbol is the Reeb

Hamiltonian r,

• Ω is an harmonic oscillator.

Both operators commute and it allows to use the Reeb dynamics

in the proof of the vanishing of the variance.
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The Weyl asymptotics and the normal form.–

N∆(λ) ∼
∞∑
l=0

NR

(
λ

2l + 1

)
and NR(µ) ∼

V

4π2
µ2 ,

with V the Popp volume, give

N∆(λ) ∼
V λ2

4π2

∞∑
l=0

1

(2l + 1)2
,

This gives

N∆(λ) ∼
V λ2

32
.
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Remark: the Popp volume and the asymptotic linking invariant

introduced by V. Arnold.

If X = S3 and Z is a divergence free vector field, Arnold in-

troduced an invariant measuring the average asymptotic linking

number of two long trajectories of Z. In our case, this is exactly

1/
∫
X dP . Hence, Weyl formula shows that the Arnold invariant

is a spectral invariant.
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It is known [Melrose 1984] that the lengths of closed geodesics

are determined by the spectrum. It is likely that they are family

of closed geodesics spiraling around the closed Reeb orbits in a

precise way, with lengths Tn ∼
√

2πkT .

On the other hand, if the normal form were exact, we would

have:
∞∑
n=1

1

λsn
=
∞∑
l=1

1

(2l + 1)s
.
∞∑
n=1

1

µsn
,

where the µn’s are the eigenvalues of R. Apply then the Toeplitz

version of the wave trace (Boutet-Guillemin).

This leads us to the

Conjecture 1: The Reeb periods are spectral invariants of

∆sR in the 3D contact case.
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The Grushin case.–

X is a 2D closed manifold and ∆ = X?
1X1 + X?

2X2 where X1

and X2 are independent outside of a 1D closed manifold Y :

more precisely X1 ∧X2 vanish on Z with a non zero differential

and ([X1, X2], X1, X2) generate TX. Note that g is Riemannian

outside of Y .
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An explicit example.–

X = S2 ⊂ R3
x1,x2,x3

. Let us denote by X1 = x2∂x3 − x3∂x2, · · · .
The Laplace Beltrami operator is ∆ = −

(
X2

1 +X2
2 +X2

3

)
. The

operator ∆sR = −
(
X2

1 +X2
2

)
is a Grushin Laplacian commuting

with X3 and hence with ∆. Y is the equator x3 = 0. If (Yl,m)|m|≤l
is the usual basis of spherical harmonics, we have

∆sRYl,m =
(
l(l + 1)−m2

)
Yl,m

The Weyl asymptotics is given by a lattice point problem for

integer points between an hyperbola and his asymptotes. We

get N(λ) ∼ 1
2λ lnλ.
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Weyl asymptotics.–

Near Y , the Riemannian measure satisfies dxg ∼
∣∣∣dSS ∣∣∣ ⊗ dν where

S is any local equation of Y and ν a measure on Y .

We have the following 2-terms heat expansion∫
M
f(x)e(t, x, x)dµ =

1

4πt

(
| ln t|

∫
Y
fdν + p.v.g

∫
X
fdxg +A

∫
Y
fdν + o(1)

)
,

with A = γ + 4 ln 2 and γ the Euler constant.

Note that this result CANNOT be obtained from the pointwise

asymptotics of the heat kernels.
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It follows that

N(λ) ∼
∫
Y dν

4π
λ logλ

dw∆ =
1

ν(Y )
dν

and dW∆ is the lift to SΣ (a twofold cover of Y ) of dw∆.
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QE and QL.–

Theorem 3 If Y is connected, QE holds.

Every QL dm splits dm = dm0 + dm1 where dm0 is supported by

SΣ and is a locally constant multiple of dW∆, dm1(SΣ) = 0 and

dm1 is invariant under the (Riemannian) geodesic flow.

This follows from the desingularization which is contact 3D and

our result on QL’s in this case.
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Martinet case.–

We consider the 3D case where E = kerα with α ∧ dα vanishing

with a non zero differential on a sub-manifold Y ⊂ X (locally

α = dx − z2dy). We assume, for simplicity, that E and TY are

transversal at all points of Y . On X \ Y , we have a contact sR

metric and a Popp volume dP . Locally, if Y is defined by S = 0,

we have dP =
∣∣∣dSS ∣∣∣ ⊗ dν + 0(1) where dν is a measure on Y .

Similarly to the Grushin case, we have a 2-term heat expansion

from which follows the Weyl asymptotics∑
λn≤λ

∫
fφ2

ndµ ∼
∫
Y fdν

32
λ2 logλ .

Hence dw∆ = (1/ν(Y ))dν and dW∆ is the lift to S (ΣY ).
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This implies that a density 1 sub-sequence concentrates on Y .

This is another form of the results of R. Montgomery in the nice

CMP (95) paper “Hearing the zero locus of a magnetic field”.
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Conjecture 2: QE in the Martinet case

Let us denote by F = E ∩ TY the 1D foliation of Y induced

by the distribution E. The manifold Y , if connected and

orientable, is a 2 torus. Assume that F is isomorphic to

a constant irrational foliation on R2/Z2. We conjecture is

that QE holds in this case.
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Thank you,
further progress is expected

from the ANR contract SRGI which starts this year.

Any other help will be welcome!
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