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The action of pseudo-differential operators on functions har-
monic outside a smooth hyper-surface [Louis Boutet De Monvel
(IMJ), Yves Colin De Verdiére (IF) (Submitted on 24 Sep 2012)]
We consider a smooth hyper-surface Z of a closed Riemannian manifold X.
Let P be the Poisson operator associating to a smooth function on Z its
harmonic extension on X \ Z. If A is a pseudo-differential operator on X of
degree < 3, we prove that B = P*AP is a pseudo-differential operator on Z

and calculate the principal symbol of B.



Le 28 juin 2012

Boutet de Monvel Louis <louis.boutet-de-monvel@orange.fr> a écrit:

Cher Yves,

merci de tes mels. Je suis loin d’étre le principal auteur, mais
je serais quand méme trés content de cosigner cette note - comme
ca, ¢a fera au moins un papier cosigné, en 35 ans ! Je prends

quand méme un ou deux jours de plus pour relire la deuxiéme version.

Amitiés, Louis



Sub-Riemannian (sR) Laplacians are self-adjoint hypo-elliptic
operators “a la Hormander’” on which Louis contributed a lot.
Works in the seventies and the eighties by many people.

One of our main objectives while starting this work was to get
Quantum Ergodicity results for sR Laplacians and more generally
to understand the link between their spectral asymptotics and
some classical dynamics (not always the geodesic flow).



We succeeded for 3D contact distributions: the relevant dynam-
ics is then the associated Reeb vector field.

I will also present some results for some generic singularities of
the distribution (Grushin and Martinet singularities). As far as
we know, Weyl asymptotics were not known in these cases. We
show that most eigenfunctions do concentrate on the singular
set.



Topics.—

e Sub-Riemannian Laplacians

e \Weyl measures

e Quantum limits and Quantum ergodicity

e [ he 3D contact case

e Singular cases: Grushin and Martinet.



Sub-Riemannian Laplacians.—

SR Laplacians are locally given by

l
A = Z X5 Xm
m=1
where the family of vector fields (X,,) satisfies the Hormander
bracket generating condition: the iterated brackets of the vector

fields (X,,) generate the tangent space.



A more global and intrinsic definition is

e X asmooth compact connected manifold of dimension d with
a smooth measure u

e A smooth linear bundle map 5 from a vector bundle E on
X into T X satisfying the bracket generating condition (the
iterated brackets of images of sections of E generate T'X)

e A smooth metric g on E.

To these data is associated a finite distance using the lengths of
“horizontal” paths, ie tangent to j(FE).



We do not assume that FE is a sub-bundle of TX (see Grushin
case).

The distribution is called equi-regular if E is a sub-bundle of
TX and, defining E=F{ CE>C---Er=TX with Er = E,._1 +
[E,E._1], each E; is a sub-bundle of TX. In this case Qg =
dim E1 +2dim(E>/E1) + --- is the Hausdorff dimension of X for
the sR distance.
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We define the sR Laplacian Ay, as the self-adjoint operator on
L2(X, ) which is the Friedrichs extension of the closure of the
quadratic form D(f) := [y ||df||2du where ||df]||4 is the g—norm of
d(foj).
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Locally, if (e1,ep,---,¢€;) is a local orthonormal frame for (F,g),
Agp=X1X1+ X5Xo+

where the vector fields X;,'s are the images of the e,’s by 3 and
the adjoints are taken w.r. to u.

The principal symbol of Ay, is the co-metric g* defined by
g (x, &) = ||& ongx. The sR Laplacians are not elliptic at the
points where j, is not surjective. The characteristic manifold
> C T*X is the orthogonal of j(F). The sub-principal symbol
vanishes and different choices of u give operators unitarily equiv-
alent up to a bounded operator. The main spectral asymptotics
depends only of the metric.

It follows from HOrmander’'s Theorem that Ay, is sub-elliptic
and has a compact resolvent, hence a discrete spectrum and a
spectral decomposition (¢n,A\n). We are interested in spectral
asymptotics for sR Laplacians Ay .
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Link with magnetic fields.—

(M, h) is a closed Riemannian manifold and X — M is a S1-bundle
with a connection V. The sR distribution E is the horizontal
space of V and g is the pull-back of h on E. The curvature
B € Q2(M) of V is the magnetic field.

The sR laplacian on X commutes with the S! action. Using
Fourier expansion allows a decomposition Agp = @,,cz4An Where
A, IS a Schrodinger operator on M with magnetic field nB.
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If M is of dimension 2, transverse vanishing of B along a curve
Y corresponds to a Martinet singularity in X. This was first
observed by Richard Montgomery and leads him to the discovery
of existence of singular geodesics, i.e. geodesics which are not
projections of integral curves of the Hamiltonian vector field.
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If M is of dimension 3 and B is non vanishing, the corresponding
SR structure is equi-regular in dimension 4 and is called quasi-
contact. Magnetic lines are projections of the singular geodesics.

QE in this case could possibly come from the ergodicity of the
magnetic vector field.
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Weyl measures.—

If A is an operator with compact resolvent and N(\) = #{\, <
A} the spectral counting function, we define (if they exist!) the
Weyl (probability) measures as follows:

The local Weyl measure de on X

[ fawa = Jim == 3 [ flonPdn

A— 00 N()\) A<

T he micro-local Weyl measure diWa on the co-sphere bun-
dle S*X

1
ooy 24 = i 55 57 (OB(@)nlo)

where Op(a) is any WDO of degree 0 with principal symbol a.

If p: S*X — X is the projection, psdWa = dwa.
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The microlocal Weyl measure is related to the average correla-
tion of the eigenfunctions: if, locally,

Clz,y) = lim m)\z dn(z +y/2)pn(z —y/2),

using Weyl quantization, one gets that the correlation is the
Fourier transform w.r. to & of the microlocal Weyl density:

_ —1 dWACBaS)
C(fﬁ,y)—/Rde &Y - .
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General facts:

e The measures dwa and dWa depend only of (E,j,g) and not
of u. dW is invariant by the involution (z,£) — (x, =£).

e In the equi-regular case, dwa is smooth and is in general
distinct from the normalized Hausdorff measure (U. Boscain
and al. proved that the Hausdorff measure is not smooth in
general in the contact case for d > 5).

o dW A is supported by S (and even by S(EQ_1> in the equi-
regular case)
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e T he Weyl measure is often supported by the set where more
brackets are needed (Grushin and Martinet cases) and hence
can be singular w.r. to pu.

o If QE holds, the limit measure is dW .

If support(dwa) = K C X, then almost all eigenfunctions
concentrate on K: [y f\qﬁnj\Qdu — 0 if support(f)NK = ( for
a density 1 subsequence.



Q(uantum)L (limits) and Q(uantum)E(rgodicity).—

A probability measure v on S*X is called a Q(uantum)L(imit)
if there exists a sequence of eigenfunctions Pn; with n; — oo so
that

im (A, |én,) = /S*X ady

J—00

for any WDO A of degree 0 with principal symbol a.
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We say that the eigen-basis (¢n),cn Satisfies QE if there exists
a density one sub-sequence (An;) of (An) so that

]|'_>r20<A¢n]|¢n]> — /S*X adWa

for any WDO A of degree 0 with principal symbol a.

Density 1 means that

s <A}
lim J —
A—00 N(N)
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The historical example of QE is due to A. Shnirelman (74")
(proved later by Zelditch, YCdV).—

If (X,g) is a closed Riemannian manifold whose geodesic
flow is ergodic, QE holds for any eigen-basis of the Laplace-
Beltrami operator with v the normalized Riemannian vol-
ume. This applies in particular if the curvature of (X, g) is < 0.
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This result has been extended to many cases: manifolds with
boundaries, discontinuous metrics, semi-classical Schrodinger op-

erators, large regular graphs. To our knowledge, nothing was
known before our work in the sR case.
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Path to QE Theorems.—

One needs to determine the microlocal Weyl measure and to get
a vanishing Theorem for the variance: if [¢«y adWa = 0, then

Vara (A) := I|m W)\n§<:A| (Adn|dn)|? =

Usually the vanishing of the variance comes from ergodicity as-
sumptions for a suitable dynamics preserving dWa .
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QL and QE in the 3D contact case.—

Let us start with a 3D closed manifold X with a smooth measure
@ and an oriented contact distribution, i.e. E = ker a with aAda
non vanishing. Let us give a smooth sR metric g on E. There
exists a unique contact form 8 so that dB(eq1,ep) = 1 for any
positive orthonormal frame (eq,er) of E for g. Let us denote
by Z the Reeb vector field of g (i.e. 8(Z) = 1, dpB(Z,.) = 0).
Then the Popp measure dP = |3 Adp| is Z—invariant. The Weyl
formula reads

N()) ~ IxdP o
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The Weyl measure is dwa = ﬁdP. Let us denote by > the
X

symplectic sub-cone of T*X generated by «. The sphere bundle
S22 is a two-fold covering of X and and dW is one half of the
pull back on S of dwa.
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An Hamiltonian interpretation of Z.—

r .2 — R is the positively homogeneous function with value 1
on =4, the Hamiltonian vector field A}, on X projects onto the
Reeb vector field +~7.
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Our results are the following [ArXiv 2015]:

Theorem 1 If the dynamics of the Reeb vector field 7 is
ergodic for the Popp volume, QE holds for any real eigen-
basis of the sR Laplacians Ay

Theorem 2 No assumption on the dynamics. Any QL v
splits v = vg + v; where

e 1o IS supported by S22 and invariant under the Reeb
vector field

e 11(SX) = 0 and vq is invariant under the sR geodesic
flow
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Example: X is the unit cotangent bundle of a 2D closed Rieman-
nian manifold (M, h), E = ker a with « the Liouville form. Then
we can choose g so that the Reeb vector field is the geodesic

flow of (M, h).
Question: in this case, what is the link of our result and Shnirelman’s

Theorem? Work in progress if M is an hyperbolic surface with
Joachim Hilgert and Tobias Weich.
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Main intuition: The Reeb dynamics and the geodesics

All sR geodesics in T*X with Cauchy data (xzqg, {g+7a(zg)) € T*X
with 7 € R have the same Cauchy data in T X. As 7 — 400, they
spiral around the trajectories of 2. Reeb trajectories are CO

limits of geodesics.
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More precisely, we use a Birkhoff normal form along > already
discussed by Melrose [84]. It has the following simple form

A=R®Q4+ Os(oc0)

along 2~ where

e R is a Toeplitz elliptic operator of degree 1 associated to
the symplectic cone > whose principal symbol is the Reeb
Hamiltonian r,

e (2 is an harmonic oscillator.

Both operators commute and it allows to use the Reeb dynamics
in the proof of the vanishing of the variance.
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The Weyl asymptotics and the normal form.—

NA(N) iN(A>andN() 4
A = R ol + 1 R\H 47_(_2/"'
with V the Popp volume, give
VA2 X 1
NAN) ~—5 >

42 = (20+1)2°
This gives
V2

Na)~55

2
)
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Remark: the Popp volume and the asymptotic linking invariant
introduced by V. Arnold.

If X = S3 and Z is a divergence free vector field, Arnold in-
troduced an invariant measuring the average asymptotic linking
number of two long trajectories of Z. In our case, this is exactly
1/ [x dP. Hence, Weyl formula shows that the Arnold invariant
IS a spectral invariant.
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It is known [Melrose 1984] that the lengths of closed geodesics
are determined by the spectrum. It is likely that they are family
of closed geodesics spiraling around the closed Reeb orbits in a
precise way, with lengths 1, ~ v/27kT'.

On the other hand, if the normal form were exact, we would

have:
o0 1 o0

X 1<2z+1>s Zlu_n

n=1
where the uy's are the eigenvalues of R. Apply then the Toeplitz
version of the wave trace (Boutet-Guillemin).

This leads us to the

Conjecture 1: The Reeb periods are spectral invariants of
A¢r Iin the 3D contact case.
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T he Grushin case.—

X is a 2D closed manifold and A = X7X; + X5X> where X,
and X-> are independent outside of a 1D closed manifold Y:
more precisely X1 A X» vanish on Z with a non zero differential
and ([X1, X5], X1, X5) generate TX. Note that g is Riemannian
outside of Y.
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An explicit example.—
X =82 CR3 ,, ., Let us denote by X1 = x00z5 — 23015,
The Laplace Beltrami operator is A = — (X% + X3+ X%) The

operator A p = — (Xf + X%) is a Grushin Laplacian commuting
with X3 and hence with A. Y is the equator z3 = 0. If (¥} 1) ;<
is the usual basis of spherical harmonics, we have

DgrYim = (I +1) —m?) Y,

The Weyl asymptotics is given by a lattice point problem for
integer points between an hyperbola and his asymptotes. We
get N(A\) ~ 3XIn A,
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Weyl asymptotics.—

Near Y, the Riemannian measure satisfies dxg ~ ‘%‘ ® dv where
S is any local equation of Y and v a measure on Y.

We have the following 2-terms heat expansion

1
/Mf(af;)e(t,:v,a:)du =1 (| In ¢ /Y fdv+p.v., /X fdzg + A/Y fdv + 0(1))
with A =~v441In2 and ~ the Euler constant.

Note that this result CANNOT be obtained from the pointwise
asymptotics of the heat kernels.
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It follows that

d
N ~ f‘; “Xlog A

7T
1
v(Y)
and dW A is the lift to SX (a twofold cover of Y) of dwa.

dwp = dv
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QE and QL.—
Theorem 3 If'Y is connected, QE holds.

Every QL dm splits dm = dmg + dmq where dmg is supported by
S>> and is a locally constant multiple of AW, dm1(SX) = 0 and
dm1q is invariant under the (Riemannian) geodesic flow.

This follows from the desingularization which is contact 3D and
our result on QL’s in this case.
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Martinet case.—

We consider the 3D case where E = kera with a A da vanishing
with a non zero differential on a sub-manifold Y C X (locally
o = dxr — szy). We assume, for simplicity, that £ and TY are
transversal at all points of Y. On X \ Y, we have a contact sR
metric and a Popp volume dP. Locally, if Y is defined by S = 0,
we have dP = ‘%‘ ® dv + 0(1) where dv is a measure on Y.
Similarly to the Grushin case, we have a 2-term heat expansion
from which follows the Weyl asymptotics

dv
S /fgb%duw fY3"; A210g \ .

A<
Hence dwa = (1/v(Y))dv and dW A is the lift to S (Zy).
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This implies that a density 1 sub-sequence concentrates on Y.

This is another form of the results of R. Montgomery in the nice
CMP (95) paper “Hearing the zero locus of a magnetic field"”.
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Conjecture 2: QE in the Martinet case

Let us denote by FF= ENTY the 1D foliation of Y induced
by the distribution £. The manifold Y, if connected and
orientable, is a 2 torus. Assume that F' is isomorphic to
a constant irrational foliation on R2/Z2. We conjecture is
that QE holds in this case.
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T hank you,

further progress is expected
from the ANR contract SRGI which starts this year.
Any other help will be welcome!
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