< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dispersion and controllability for linear Schrödinger equations on compact Riemannian manifolds

Nalini Anantharaman

Université de Strasbourg

20 juin 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

The Schrödinger equation

(S)
$$i\frac{\partial u}{\partial t} = \left(\frac{\Delta}{2} + V\right)u$$

 $u_{\uparrow t=0} = u^{0}$

on a compact Riemannian manifold M.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two questions

- dispersive properties
- observability : under which condition(s) on the open set
 Ω ⊂ M and on T > 0 can we prove an inequality of the type

$$(\mathrm{Obs}(\Omega, T)) \quad \|u^0\|_{L^2(M)}^2 \le C(T, \Omega) \int_0^T \|u(t)\|_{L^2(\Omega)}^2 dt$$

for all u^0 ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Microlocal point of view : take $(u_n^0)_{n\in\mathbb{N}}$ a sequence of initial conditions with

 $\|u_n^0\|_{L^2(M)}=1,$

and denote by $u_n(x, t)$ the corresponding solution.

Microlocal point of view : take $(u_n^0)_{n\in\mathbb{N}}$ a sequence of initial conditions with

 $\|u_n^0\|_{L^2(M)}=1,$

and denote by $u_n(x, t)$ the corresponding solution. We study the "Wigner transforms",

$$W_{u_n}(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(M imes \mathbb{R})}$$

Microlocal point of view : take $(u_n^0)_{n\in\mathbb{N}}$ a sequence of initial conditions with

 $\|u_n^0\|_{L^2(M)}=1,$

and denote by $u_n(x, t)$ the corresponding solution. We study the "Wigner transforms",

$$W_{u_n}(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(M imes \mathbb{R})}.$$

Note that if a = a(x, t), this is just

$$W_{u_n}(a) = \int_{\mathcal{M}\times\mathbb{R}} a(x,t) |u_n(x,t)|^2 dx dt.$$

We study the "Wigner transforms",

$$W_n(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(M \times \mathbb{R})}.$$

The symbol $a(x, \xi, t, H)$ is C_c^{∞} in (x, t), C^{∞} in (ξ, H) , and satisfies the homogeneity condition

$$a(x,\xi,t,H) = a(x,\lambda\xi,t,\lambda^2H)$$

for $\lambda > 1$ and $\|\xi\|^2 + |H| > R_0$.

We study the "Wigner transforms",

$$W_n(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(M \times \mathbb{R})}.$$

The symbol $a(x, \xi, t, H)$ is C_c^{∞} in (x, t), C^{∞} in (ξ, H) , and satisfies the homogeneity condition

$$a(x,\xi,t,H) = a(x,\lambda\xi,t,\lambda^2H)$$

for $\lambda > 1$ and $\|\xi\|^2 + |H| > R_0$. In other words, outside a compact set,

$$a(x,\xi,t,H) = a_{hom}(x,\xi,t,H)$$

where a_{hom} is homogeneous.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote by S^0 this class of symbols. There exists a subsequence such that, for all $a \in S^0$,

$$W_{n_k}(a) \longrightarrow \mu(a)$$

for some $\mu \in (S^0)'$ (microlocal defect measure).

・ロト・日本・モト・モート ヨー うへで

Question : characterize (depending on the geometry on M) the possible limits μ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question : characterize (depending on the geometry on M) the possible limits μ .

The "dispersion properties" we hope for are of the type " μ has some regularity / cannot be carried by a set that is too small".

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question : characterize (depending on the geometry on M) the possible limits μ .

The "dispersion properties" we hope for are of the type " μ has some regularity / cannot be carried by a set that is too small". (Obs(Ω , T)) can be deduced from the property " $\mu(\Omega \times (0, T)) > 0$ " (for any sequence (u_{0}^{n})).

Propagation of singularities

If $u_n^0 \longrightarrow 0$ weakly in $L^2(M)$, μ is a probability measure, supported on the sphere at infinity in the variables (ξ, H) . We can write

$$\mu(a) = \mu(a_{hom})$$

for all $a \in S^0$.

Equation (S) implies that μ is carried on the set $\{\|\xi\|^2 = 2H\}$, and satisfies

$$\frac{\xi}{\sqrt{2H}} \cdot \partial_x \mu = 0.$$

(invariance under the geodesic flow)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

More precisely,

$$\mu(dx, d\xi, dt, dH) = \mu_t(dx, d\xi) dt \,\delta_{H = \|\xi\|^2/2}$$

where, for almost every t, μ_t is a probability measure on the sphere bundle S^*M , invariant under the geodesic flow.

The geometric control condition GCC

Let $\Omega \subset \textit{M}.$ If every geodesic eventually enters $\Omega,$ then

$\mu(\Omega\times(0,T))>0$

(for any sequence (u_n^0) converging weakly to 0, any T).

The geometric control condition GCC

Let $\Omega \subset M$. If every geodesic eventually enters Ω , then

 $\mu(\Omega\times(0,T))>0$

(for any sequence (u_n^0) converging weakly to 0, any T).

An argument of Bardos-Lebeau-Rauch (for V independent of t), then shows that $(Obs(\Omega, T))$ holds for all T, if Ω satisfies (GCC).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

GCC is a sufficient condition for observability, not a necessary one.

Negative curvature : the Quantum Unique Ergodicity conjecture

On a negatively curved manifold, this conjecture predicts that all sequences of initial conditions (u_n^0) lead to the same microlocal defect measure,

$$\mu = d\mathsf{x} d\sigma(\xi) dt \, \delta_{\mathsf{H} = \|\xi\|^2/2}$$

(for any sequence of initial conditions (u_n^0) converging weakly to 0).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

But it's not even proven that such a measure μ charges every open set, or that it is absolutely continuous in x.

A-Nonnenmacher 2006, A-Rivière 2009

Denote $d = \dim M$, and say $K \equiv -1$. Let (u_n^0) be a sequence of initial conditions converging weakly to 0, let μ be a limit of the Wigner transforms W_{μ_n} .

A-Nonnenmacher 2006, A-Rivière 2009

Denote $d = \dim M$, and say $K \equiv -1$.

Let (u_n^0) be a sequence of initial conditions converging weakly to 0, let μ be a limit of the Wigner transforms W_{u_n} .

Write $\mu(dx, d\xi, dt, dH) = \mu_t(dx, d\xi)dt\delta_{H=\|\xi\|^2/2}$ where for a.e. *t*, μ_t is a probability measure on the sphere bundle S^*M .

A-Nonnenmacher 2006, A-Rivière 2009

Denote $d = \dim M$, and say $K \equiv -1$.

Let (u_n^0) be a sequence of initial conditions converging weakly to 0, let μ be a limit of the Wigner transforms W_{u_n} .

Write $\mu(dx, d\xi, dt, dH) = \mu_t(dx, d\xi)dt\delta_{H=\|\xi\|^2/2}$ where for a.e. *t*, μ_t is a probability measure on the sphere bundle S^*M .

Theorem

Then for a.e. t, the entropy of μ_t is $\geq \frac{d-1}{2}$. As a consequence, the Hausdorff dimension of the support of μ_t is $\geq d$.

In terms of observability, this implies the following. Let $\Omega \subset M$, and let $K \subset S^*M$ be the set of vectors (x, ξ) that generate geodesics that never enter Ω .

Theorem

Assume V does not depend on t. If dim K < d, then

$$\|u^0\|_{L^2(\mathcal{M})}^2 \leq C(T,\Omega) \int_0^T \|u(t)\|_{L^2(\Omega)}^2 dt$$

for all u^0 (for any T).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A-Macià 2010 : flat tori

Take for instance
$$\mathbb{T}^d = \mathbb{R}^d / 2\pi \mathbb{Z}^d$$
.
The geodesic flow is

$$\phi^{\mathsf{s}}:(x,\xi)\mapsto(x+s\xi,\xi)$$

for $(x,\xi) \in \mathbb{T}^d \times \mathbb{R}^d$, $s \in \mathbb{R}$.

A-Macià 2010 : flat tori

Take for instance $\mathbb{T}^d = \mathbb{R}^d / 2\pi \mathbb{Z}^d$. The geodesic flow is

$$\phi^{s}: (x,\xi) \mapsto (x+s\xi,\xi)$$

for $(x,\xi) \in \mathbb{T}^d \times \mathbb{R}^d$, $s \in \mathbb{R}$.

The tori $\mathbb{T}_{\xi_0} = \{(x,\xi), \xi = \xi_0\}$ are preserved.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The properties of the trajectories on \mathbb{T}_{ξ_0} depend on the rank of

$$\Lambda_{\xi_0} = \xi_0^{\perp} \cap \mathbb{Z}^d.$$

The properties of the trajectories on \mathbb{T}_{ξ_0} depend on the rank of

$$\Lambda_{\xi_0} = \xi_0^{\perp} \cap \mathbb{Z}^d.$$

If $Rk \Lambda_{\xi_0} = 0$, trajectories are dense (and equidistributed) in \mathbb{T}_{ξ_0} . If $Rk \Lambda_{\xi_0} = d - 1$, trajectories are periodic in \mathbb{T}_{ξ_0} .

More generally, if $Rk \Lambda_{\xi_0} = d - j$, each trajectory $(x_0 + t\xi_0)_{t \in \mathbb{R}}$ fills densely a subtorus of dimension j, $x_0 + \mathbb{T}_{\xi_0}$, where we define

$$\mathbb{T}_{\xi_0} = \Lambda_{\xi_0}^{\perp} / (\Lambda_{\xi_0}^{\perp} \cap \mathbb{Z}^d).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Λ be a subgroup of \mathbb{Z}^d (primitive, in the sense that $Vect(\Lambda) \cap \mathbb{Z}^d = \Lambda$). We denote

$$R_{\Lambda} = \{\xi, \Lambda_{\xi} = \Lambda\} \subset \mathbb{R}^d$$

We partition the phase space :

$$\mathbb{T}^d \times (\mathbb{R}^d \setminus \{0\}) = \sqcup_{\Lambda \neq \mathbb{Z}^d} \mathbb{T}^d \times R_{\Lambda}.$$

Let Λ be a subgroup of \mathbb{Z}^d (primitive, in the sense that $Vect(\Lambda) \cap \mathbb{Z}^d = \Lambda$). We denote

$$R_{\Lambda} = \{\xi, \Lambda_{\xi} = \Lambda\} \subset \mathbb{R}^d$$

We partition the phase space :

$$\mathbb{T}^d imes (\mathbb{R}^d \setminus \{0\}) = \sqcup_{\Lambda
eq \mathbb{Z}^d} \mathbb{T}^d imes R_{\Lambda}.$$

In dimension d = 2, $\Lambda = 0$ corresponds to irrational slopes, and the other Λ s correspond to closed geodesics.

Let Λ be a subgroup of \mathbb{Z}^d (primitive, in the sense that $Vect(\Lambda) \cap \mathbb{Z}^d = \Lambda$). We denote

$$R_{\Lambda} = \{\xi, \Lambda_{\xi} = \Lambda\} \subset \mathbb{R}^d$$

We partition the phase space :

$$\mathbb{T}^d imes (\mathbb{R}^d \setminus \{0\}) = \sqcup_{\Lambda
eq \mathbb{Z}^d} \mathbb{T}^d imes R_{\Lambda}.$$

In dimension d = 2, $\Lambda = 0$ corresponds to irrational slopes, and the other Λ s correspond to closed geodesics. Thus, if μ is a positive

Radon measure on $\mathbb{T}^d imes (\mathbb{R}^d \setminus \{0\})$, we can write

$$\mu = \sum_{\Lambda \neq \mathbb{Z}^d} \mu \big]_{\mathbb{T}^d \times R_\Lambda}.$$

Starting again from a normalized sequence (u_n^0) in $L^2(\mathbb{T}^d)$, denote by $u_n(x, t)$ the corresponding solution of (S), and

$$\mu(dx, d\xi, dt, dH) = \mu_t(dx, d\xi) dt \delta_{H = \|\xi\|^2/2}$$

a limit point of the sequence of Wigner transforms W_{u_n} . Assume first that (u_n^0) converges weakly to 0 in $L^2(\mathbb{T}^d)$. We apply the previous remark to each μ_t ,

$$\mu_t = \sum_{\Lambda \neq \mathbb{Z}^d} \mu_t \rceil_{\mathbb{T}^d \times R_\Lambda}$$

Introduction.

(ロ)、(型)、(E)、(E)、 E) の(の)

Study of $\mu_t \rceil_{\mathbb{T}^d \times R_{\Lambda}}$.

If $\Lambda=0,$ then invariance under there geodesic flow implies that

$$d\mu_t$$
 $]_{\mathbb{T}^d \times R_0} = dx \otimes d\nu_0(\xi).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $Rk \Lambda = 1$, then invariance under there geodesic flow implies that $\mu_t \rceil_{\mathbb{T}^d \times R_\Lambda}$ is the Lebesgue measure in the direction of the hyperplane $x \in \Lambda^\perp$. There is only 1 non trivial direction to understand.

If $Rk \Lambda = 1$, we show the following : for all $a \in S^0$,

$$\int a d\mu_t]_{\mathbb{T}^d \times R_{\Lambda}} = \int a_{hom} dx \otimes d\nu_{\Lambda}(\xi)$$

$$+ \int_{\xi \in R_{\Lambda}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi)$$

If $Rk \Lambda = 1$, we show the following : for all $a \in \mathcal{S}^0$,

$$\int a d\mu_t]_{\mathbb{T}^d \times R_{\Lambda}} = \int a_{hom} dx \otimes d\nu_{\Lambda}(\xi)$$

$$+ \int_{\xi \in R_{\Lambda}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi)$$

In addition (if V is C⁰), the operator $\rho_{\Lambda}(t,\xi) \in \mathcal{L}^{1}_{+}(L^{2}(\mathbb{T}_{\Lambda}))$ satisfies the Heisenberg propagation law

 $\rho(t) = U^*_{\Lambda}(t)\rho(0)U_{\Lambda}(t)$

where $U_{\Lambda}(t)$ is the unitary propagator for the S-equation on $L^{2}(\mathbb{T}_{\Lambda})$,

$$(\mathrm{S}_{\mathsf{\Lambda}}) \qquad i rac{\partial v}{\partial t} = \left(rac{\Delta_{\mathsf{\Lambda}}}{2} + \langle V
angle_{\mathsf{\Lambda}^{\perp}}
ight).$$

Second microlocalisation (2-microlocal defect measures)

The decomposition

$$\int a d\mu_t]_{\mathbb{T}^d \times R_{\Lambda}} = \int a_{hom} dx \otimes d\nu_{\Lambda}(\xi)$$

$$+ \int_{\xi \in R_{\Lambda}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi)$$

comes from a second microlocalisation :

$$W_{u_n}(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(\mathbb{T}^d \times \mathbb{R})}$$

= $\left\langle u_n, a(x, D_x, t, D_t)(1 - \chi) \left(\frac{D_x^{\Lambda}}{R} \right) u_n \right\rangle_{L^2(\mathbb{T}^d \times \mathbb{R})}$
+ $\left\langle u_n, a(x, D_x, t, D_t) \chi \left(\frac{D_x^{\Lambda}}{R} \right) u_n \right\rangle_{L^2(\mathbb{T}^d \times \mathbb{R})}$

and by taking the limits $n \longrightarrow \infty$ followed by $\underset{n \longrightarrow n}{R} \xrightarrow{} \infty$.

More generally, we show that μ_t has the following structure : for all $a \in S^0$,

$$\int ad\mu_t = \int a_{hom} dx \otimes d\nu(\xi)$$

$$+ \sum_{\Lambda \neq \mathbb{Z}^d} \int_{\xi \in \Lambda^{\perp}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi).$$

More generally, we show that μ_t has the following structure : for all $a \in S^0$,

$$\int a d\mu_t = \int a_{hom} dx \otimes d\nu(\xi)$$

$$+ \sum_{\Lambda \neq \mathbb{Z}^d} \int_{\xi \in \Lambda^{\perp}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi).$$

If V is continuous, each $\rho_{\Lambda}(t,\xi)$ satisfies the Heisenberg propagation law, for the Schrödinger equation (S_{Λ}) on $L^{2}(\mathbb{T}_{\Lambda})$.

More generally, we show that μ_t has the following structure : for all $a \in S^0$,

$$\int a d\mu_t = \int a_{hom} dx \otimes d\nu(\xi)$$

$$+ \sum_{\Lambda \neq \mathbb{Z}^d} \int_{\xi \in \Lambda^{\perp}} \operatorname{Tr}_{L^2(\mathbb{T}_{\Lambda})} \left(M_{\langle a_{hom} \rangle_{\Lambda^{\perp}}}(t,\xi) \rho_{\Lambda}(t,\xi) \right) d\ell_{\Lambda}(\xi).$$

If V is continuous, each $\rho_{\Lambda}(t,\xi)$ satisfies the Heisenberg propagation law, for the Schrödinger equation (S_{Λ}) on $L^{2}(\mathbb{T}_{\Lambda})$. If (u_{n}^{0}) does not converge weakly to 0, there is an additional term

$$\operatorname{Tr}_{L^2(\mathbb{T}^d)}(a(x, D_x, t)\rho(t))$$

where $\rho(t)$ is the limit, for the weak-* topology of $\mathcal{L}^1_+(L^2(\mathbb{T}^d))$, of the rank-one projectors $|u_n(t)\rangle\langle u_n(t)|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

(absolute continuity) $V \in L^{\infty}(\mathbb{T}^d \times \mathbb{R})$

Let $\pi : \mathbb{T}^d \times \mathbb{R}^d \longrightarrow \mathbb{T}^d$. Then $\pi_* \mu_t$ is absolutely continuous.

Corollary

(absolute continuity) $V \in L^{\infty}(\mathbb{T}^d \times \mathbb{R})$

Let $\pi : \mathbb{T}^d \times \mathbb{R}^d \longrightarrow \mathbb{T}^d$. Then $\pi_* \mu_t$ is absolutely continuous.

Comes from the fact that measures of the form

 $a \mapsto \operatorname{Tr}(a(x)\widetilde{\rho})$

for some $\widetilde{\rho} \in \mathcal{L}^1_+(L^2(\mathbb{T}_\Lambda))$ are absolutely continuous.

Corollary

(observability) $V \in C^0(\mathbb{T}^d \times \mathbb{R})$ Let $\Omega \subset \mathbb{T}^d$ and, for any $\Lambda \subset \mathbb{Z}^d$, let Ω_Λ be its orthogonal projection on \mathbb{T}_Λ .

Assume one the the following statements holds :

- Unique continuation for all the equations (S_A) on $\Omega_A \times (0, T)$
- OR : the potential $V \in C^0(\overline{\mathbb{D}}; \mathbb{R})$ does not depend on t.

Then the observability inequality holds :

$$(\mathrm{Obs}(\Omega, T)) \quad \|u^0\|_{L^2(M)}^2 \le C(T, \Omega) \int_0^T \|u(t)\|_{L^2(\Omega)}^2 dt$$

for all u^0 .

Corollary

(observability) $V \in C^0(\mathbb{T}^d \times \mathbb{R})$ Let $\Omega \subset \mathbb{T}^d$ and, for any $\Lambda \subset \mathbb{Z}^d$, let Ω_Λ be its orthogonal projection on \mathbb{T}_Λ .

Assume one the the following statements holds :

- Unique continuation for all the equations (S_{\Lambda}) on $\Omega_{\Lambda} \times (0, T)$
- OR : the potential $V \in C^0(\overline{\mathbb{D}}; \mathbb{R})$ does not depend on t.

Then the observability inequality holds :

$$(\mathrm{Obs}(\Omega, T)) \quad \|u^0\|_{L^2(M)}^2 \le C(T, \Omega) \int_0^T \|u(t)\|_{L^2(\Omega)}^2 dt$$

for all u^0 .

Unique continuation is known to hold for any open set if V(x, t) is analytic (Holmgren). If $V \in C^0$ does not depend on t, we can use an argument of Lebeau relying on unique continuation of eigenfunctions to show $(Obs(\Omega, T))$ directly.

Reference to other work :

Absolute continuity of μ : for V = 0 and (u_n^0) eigenfunctions of Δ (stationary solutions), due to Bourgain-Jakobson 1997 using Fourier series expansion of solutions.

For V = 0, Macià had given a microlocal proof in dimension d = 2.

Burg (2013) shows that the absolute continuity result for V = 0 implies the result for $V \in L^1_{loc}(\mathbb{R}_t, \mathcal{L}(L^2(\mathbb{T}^d))).$

Reference to other work :

The observability result was proven by Jaffard and Haraux (90), for V = 0 (using Fourier expansions).

Burq-Zworski give a microlocal proof in d = 2 (V = 0 2003, $V \neq 0$, continuous, time-independent, 2011).

Our observability result holds in arbitrary dimension, for V continuous, or Riemann integrable. Bourgain-Burq-Zworski (2012) manage to lower the regularity to $V \in L^2$, in dimension d = 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Extension

This work has been extended by A-Fermanian-Macià to more general (semiclassical) equations on \mathbb{T}^d ,

$$i\hbar \frac{\partial u}{\partial t} = (H(\hbar D_x) + \hbar^2 V)u$$

where we impose the (necessary) condition $d^2H > 0$.

Extension

This work has been extended by A-Fermanian-Macià to more general (semiclassical) equations on $\mathbb{T}^d,$

$$i\hbar \frac{\partial u}{\partial t} = (H(\hbar D_x) + \hbar^2 V)u$$

where we impose the (necessary) condition $d^2H > 0$.

Using locally the Arnold-Liouville theorem, this also implies results for more general, non-degenerate, completely integrable systems.

The disc

The Schrödinger equation

(S)
$$i\frac{\partial u}{\partial t} = \left(\frac{\Delta}{2} + V\right)u$$

 $u_{\mid t=0} = u^0$

in the disc $\mathbb{D} = \{(x, y), x^2 + y^2 < 1\}$, with Dirichlet boundary condition.

(ロ)、(型)、(E)、(E)、 E) のQ()

(ロ)、(型)、(E)、(E)、 E) の(の)

The classical dynamics is the billiard flow :

$$\phi^t:(x,\xi)\mapsto(x+t\xi,\xi)$$

as long as the trajectory stays inside the disc, and reflection on the boundary.

æ

A nice set of coordinates for the dynamics is $\Phi: (s, \theta, E, J) \longrightarrow (x, y, \xi_x, \xi_y)$ where

$$\begin{cases} x = \frac{J}{E}\cos\theta - s\sin\theta, \\ y = \frac{J}{E}\sin\theta + s\cos\theta, \\ \xi_x = -E\sin\theta, \\ \xi_y = E\cos\theta. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In these coordinates, the flow ϕ^t reads (away from reflections)

$$(s, \theta, E, J) \mapsto (s + tE, \theta, E, J)$$

and the rotation of angle τ around the origin \mathbb{R}^{τ} (generated by J) reads

$$(s, \theta, E, J) \mapsto (s, \theta + \tau, E, J)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The angle of the trajectory with the boundary is

$$\alpha = -\arcsin\left(\frac{J}{E}\right)$$

. The equation of the boundary is

$$s = \pm \cos \alpha = \pm \sqrt{1 - \frac{J^2}{E^2}}.$$

The reflection on the boundary reads

$$(\cos \alpha, \theta, E, J) \mapsto (-\cos \alpha, \theta + 2\alpha, E, J).$$

E and *J* (and α) are conserved.

A-Macià-Léautaud 2014

Take again (u_n^0) a sequence of initial conditions, normalized in $L^2(\mathbb{D})$. We extend is by 0 outside the disc and call $u_n(x, t)$ the associated solutions (with Dirichlet boundary condition) Again we consider

$$W_{u_n}(a) = \langle u_n, a(x, D_x, t, D_t) u_n \rangle_{L^2(\mathbb{D} \times \mathbb{R})},$$

 $a \in S^0$.

We prove a structure theorem for the limits μ of the sequence W_{u_n} . It has the following consequences :

Theorem

Let (u_n^0) be a sequence in $L^2(\mathbb{D})$, such that $||u_n^0||_{L^2(\mathbb{D})} = 1$ for all n. Consider the sequence of positive Radon measures ν_n on $\overline{\mathbb{D}} \times \mathbb{R}$, defined by

$$\nu_n(dx, dt) = |u_n(x, t)|^2 dx dt.$$

Let ν be any weak-* limit of the sequence (ν_n) : then $\nu(dx, dt) = \nu_t(dx)dt$ where, for almost every t, ν_t is a probability measure on $\overline{\mathbb{D}}$, and $\nu_t]_{\mathbb{D}}$ is absolutely continuous.

Unique continuation, observability

Theorem

Let $\Omega \subset \overline{\mathbb{D}}$ be an open set such that $\Omega \cap \partial \mathbb{D} \neq \emptyset$ and fix any

T > 0. Assume one the the following statements holds :

- the potential V ∈ C[∞]([0, T] × D; ℝ) and the open set Ω satisfy (UCP_{V,Ω}),
- the potential $V \in C^0(\overline{\mathbb{D}}; \mathbb{R})$ does not depend on t.

Then there exists $C = C(T, \Omega) > 0$ such that :

$$\left\| u^{0} \right\|_{L^{2}(\mathbb{D})}^{2} \leq C \int_{0}^{T} \| u(t) \|_{L^{2}(\Omega)}^{2} dt,$$
 (4.1)

for every initial datum $u^{0} \in L^{2}(\mathbb{D})$.

Unique continuation, observability

Theorem

Let $\Omega\subset\overline{\mathbb{D}}$ be an open set such that $\Omega\cap\partial\mathbb{D}
eq\emptyset$ and fix any

T > 0. Assume one the the following statements holds :

- the potential $V \in C^{\infty}([0, T] \times \overline{\mathbb{D}}; \mathbb{R})$ and the open set Ω satisfy $(UCP_{V,\Omega})$,
- the potential $V \in C^0(\overline{\mathbb{D}}; \mathbb{R})$ does not depend on t.

Then there exists $C = C(T, \Omega) > 0$ such that :

$$\left\| u^{0} \right\|_{L^{2}(\mathbb{D})}^{2} \leq C \int_{0}^{T} \| u(t) \|_{L^{2}(\Omega)}^{2} dt,$$
 (4.1)

for every initial datum $u^{0} \in L^{2}(\mathbb{D})$.

$$u^0 \in L^2(\mathbb{D}), \quad u(t) \mid_{(0,T) \times \Omega} = 0 \Longrightarrow u^0 = 0.$$
 (UCP_{V,Ω})

Boundary observability

Theorem

Let Γ be any nonempty subset of $\partial \mathbb{D}$ and fix any T>0. Suppose one of the following holds :

- $V \in C^{\infty}([0, T] \times \overline{\mathbb{D}})$ and Γ satisfy $(UCP_{V, \Gamma})$,
- $V \in C^0(\overline{\mathbb{D}})$ does not depend on t.

Then there exists $C = C(T, \Gamma) > 0$ such that :

$$\left\|u^{0}\right\|_{H^{1}(\mathbb{D})}^{2} \leq C \int_{0}^{T} \left\|\partial_{n}u(t)\right\|_{L^{2}(\Gamma)}^{2} dt,$$

for every initial datum $u^0 \in H^1_0(\mathbb{D})$.

Boundary observability

Theorem

Let Γ be any nonempty subset of $\partial \mathbb{D}$ and fix any T>0. Suppose one of the following holds :

- $V \in C^{\infty}([0, T] \times \overline{\mathbb{D}})$ and Γ satisfy $(UCP_{V, \Gamma})$,
- $V \in C^0(\overline{\mathbb{D}})$ does not depend on t.

Then there exists $C = C(T, \Gamma) > 0$ such that :

$$\left\|u^{0}\right\|_{H^{1}(\mathbb{D})}^{2} \leq C \int_{0}^{T} \left\|\partial_{n}u(t)\right\|_{L^{2}(\Gamma)}^{2} dt,$$

for every initial datum $u^0 \in H^1_0(\mathbb{D})$.

$$u^{0} \in H^{1}_{0}(\mathbb{D}), \quad \partial_{n}u]_{(0,T)\times\Gamma} = 0 \Longrightarrow u^{0} = 0, \qquad (\mathsf{UCP}_{V,\Gamma})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$(UCP_{V,\Omega})$ and $(UCP_{V,\Gamma})$ are known to hold when V is analytic in (t, x) (Holmgren).