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The Schrödinger equation

(S) i
∂u

∂t
=

(
∆

2
+ V

)
u

uet=0 = u0

on a compact Riemannian manifold M.
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Two questions

dispersive properties

observability : under which condition(s) on the open set
Ω ⊂ M and on T > 0 can we prove an inequality of the type

(Obs(Ω,T )) ‖u0‖2
L2(M) ≤ C (T ,Ω)

∫ T

0
‖u(t)‖2

L2(Ω)dt

for all u0 ?
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Microlocal point of view : take (u0
n)n∈N a sequence of initial

conditions with
‖u0

n‖L2(M) = 1,

and denote by un(x , t) the corresponding solution.

We study the “Wigner transforms”,

Wun(a) = 〈un, a(x ,Dx , t,Dt)un〉L2(M×R).

Note that if a = a(x , t), this is just

Wun(a) =

∫
M×R

a(x , t)|un(x , t)|2dxdt.
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We study the “Wigner transforms”,

Wn(a) = 〈un, a(x ,Dx , t,Dt)un〉L2(M×R).

The symbol a(x , ξ, t,H) is C∞c in (x , t), C∞ in (ξ,H), and
satisfies the homogeneity condition

a(x , ξ, t,H) = a(x , λξ, t, λ2H)

for λ > 1 and ‖ξ‖2 + |H| > R0.

In other words, outside a compact set,

a(x , ξ, t,H) = ahom(x , ξ, t,H)

where ahom is homogeneous.
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We denote by S0 this class of symbols.
There exists a subsequence such that, for all a ∈ S0,

Wnk (a) −→ µ(a)

for some µ ∈ (S0)′ (microlocal defect measure).
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Question : characterize (depending on the geometry on M) the
possible limits µ.

The “dispersion properties” we hope for are of the type “µ has
some regularity / cannot be carried by a set that is too small”.

(Obs(Ω,T )) can be deduced from the property
“µ(Ω× (0,T )) > 0” (for any sequence (u0

n)).
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Propagation of singularities

If u0
n −→ 0 weakly in L2(M), µ is a probability measure, supported

on the sphere at infinity in the variables (ξ,H).
We can write

µ(a) = µ(ahom)

for all a ∈ S0.
Equation (S) implies that µ is carried on the set {‖ξ‖2 = 2H}, and
satisfies

ξ√
2H
· ∂xµ = 0.

(invariance under the geodesic flow)
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More precisely,

µ(dx , dξ, dt, dH) = µt(dx , dξ)dt δH=‖ξ‖2/2

where, for almost every t, µt is a probability measure on the sphere
bundle S∗M, invariant under the geodesic flow.
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The geometric control condition GCC

Let Ω ⊂ M. If every geodesic eventually enters Ω, then

µ(Ω× (0,T )) > 0

(for any sequence (u0
n) converging weakly to 0, any T ).

An argument of Bardos-Lebeau-Rauch (for V independent of t),
then shows that (Obs(Ω,T )) holds for all T , if Ω satisfies (GCC).
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GCC is a sufficient condition for observability, not a necessary one.
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Negative curvature : the Quantum Unique Ergodicity
conjecture

On a negatively curved manifold, this conjecture predicts that all
sequences of initial conditions (u0

n) lead to the same microlocal
defect measure,

µ = dxdσ(ξ)dt δH=‖ξ‖2/2

(for any sequence of initial conditions (u0
n) converging weakly to 0).
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But it’s not even proven that such a measure µ charges every open
set, or that it is absolutely continuous in x .
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A-Nonnenmacher 2006, A-Rivière 2009

Denote d = dimM, and say K ≡ −1.
Let (u0

n) be a sequence of initial conditions converging weakly to 0,
let µ be a limit of the Wigner transforms Wun .

Write µ(dx , dξ, dt, dH) = µt(dx , dξ)dtδH=‖ξ‖2/2 where for a.e. t,
µt is a probability measure on the sphere bundle S∗M.

Theorem

Then for a.e. t, the entropy of µt is ≥ d−1
2 . As a consequence, the

Hausdorff dimension of the support of µt is ≥ d .
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In terms of observability, this implies the following. Let Ω ⊂ M,
and let K ⊂ S∗M be the set of vectors (x , ξ) that generate
geodesics that never enter Ω.

Theorem

Assume V does not depend on t.
If dimK < d , then

‖u0‖2
L2(M) ≤ C (T ,Ω)

∫ T

0
‖u(t)‖2

L2(Ω)dt

for all u0 (for any T ).
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A-Macià 2010 : flat tori

Take for instance Td = Rd/2πZd .
The geodesic flow is

φs : (x , ξ) 7→ (x + sξ, ξ)

for (x , ξ) ∈ Td × Rd , s ∈ R.

The tori Tξ0 = {(x , ξ), ξ = ξ0} are preserved.
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The properties of the trajectories on Tξ0 depend on the rank of

Λξ0 = ξ⊥0 ∩ Zd .

If Rk Λξ0 = 0, trajectories are dense (and equidistributed) in Tξ0 .
If Rk Λξ0 = d − 1, trajectories are periodic in Tξ0 .
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More generally, if Rk Λξ0 = d − j , each trajectory (x0 + tξ0)t∈R fills
densely a subtorus of dimension j , x0 + Tξ0 , where we define

Tξ0 = Λ⊥ξ0
/(Λ⊥ξ0

∩ Zd).
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Let Λ be a subgroup of Zd (primitive, in the sense that
Vect(Λ) ∩ Zd = Λ). We denote

RΛ = {ξ,Λξ = Λ} ⊂ Rd

We partition the phase space :

Td × (Rd \ {0}) = tΛ 6=ZdTd × RΛ.

In dimension d = 2, Λ = 0 corresponds to irrational slopes, and the
other Λs correspond to closed geodesics. Thus, if µ is a positive

Radon measure on Td × (Rd \ {0}), we can write

µ =
∑

Λ6=Zd

µeTd×RΛ
.
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Starting again from a normalized sequence (u0
n) in L2(Td), denote

by un(x , t) the corresponding solution of (S), and

µ(dx , dξ, dt, dH) = µt(dx , dξ)dtδH=‖ξ‖2/2

a limit point of the sequence of Wigner transforms Wun .
Assume first that (u0

n) converges weakly to 0 in L2(Td).
We apply the previous remark to each µt ,

µt =
∑

Λ 6=Zd

µteTd×RΛ
.
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Study of µteTd×RΛ
.

If Λ = 0, then invariance under there geodesic flow implies that

dµteTd×R0
= dx ⊗ dν0(ξ).
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If Rk Λ = 1, then invariance under there geodesic flow implies that
µteTd×RΛ

is the Lebesgue measure in the direction of the

hyperplane x ∈ Λ⊥. There is only 1 non trivial direction to
understand.



Introduction. The case of negatively curved manifolds The flat torus The disc

Theorem

If Rk Λ = 1, we show the following : for all a ∈ S0,∫
adµteTd×RΛ

=

∫
ahomdx ⊗ dνΛ(ξ)

+

∫
ξ∈RΛ

TrL2(TΛ)

(
M〈ahom〉Λ⊥ (t, ξ)ρΛ(t, ξ)

)
d`Λ(ξ)

In addition (if V is C 0), the operator ρΛ(t, ξ) ∈ L1
+(L2(TΛ))

satisfies the Heisenberg propagation law

ρ(t) = U∗Λ(t)ρ(0)UΛ(t)

where UΛ(t) is the unitary propagator for the S-equation on
L2(TΛ),

(SΛ) i
∂v

∂t
=

(
∆Λ

2
+ 〈V 〉Λ⊥

)
.
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Second microlocalisation (2-microlocal defect measures)

The decomposition∫
adµteTd×RΛ

=

∫
ahomdx ⊗ dνΛ(ξ)

+

∫
ξ∈RΛ

TrL2(TΛ)

(
M〈ahom〉Λ⊥ (t, ξ)ρΛ(t, ξ)

)
d`Λ(ξ)

comes from a second microlocalisation :

Wun(a) = 〈un, a(x ,Dx , t,Dt)un〉L2(Td×R)

=

〈
un, a(x ,Dx , t,Dt)(1− χ)

(
DΛ
x

R

)
un

〉
L2(Td×R)

+

〈
un, a(x ,Dx , t,Dt)χ

(
DΛ
x

R

)
un

〉
L2(Td×R)

and by taking the limits n −→∞ followed by R −→∞.
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Theorem

More generally, we show that µt has the following structure : for
all a ∈ S0,

∫
adµt =

∫
ahomdx ⊗ dν(ξ)

+
∑

Λ 6=Zd

∫
ξ∈Λ⊥

TrL2(TΛ)

(
M〈ahom〉Λ⊥ (t, ξ)ρΛ(t, ξ)

)
d`Λ(ξ).

If V is continuous, each ρΛ(t, ξ) satisfies the Heisenberg
propagation law, for the Schrödinger equation (SΛ) on L2(TΛ).
If (u0

n) does not converge weakly to 0, there is an additional term

TrL2(Td )(a(x ,Dx , t)ρ(t))

where ρ(t) is the limit, for the weak-? topology of L1
+(L2(Td)), of

the rank-one projectors |un(t)〉〈un(t)|.
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Corollary

(absolute continuity) V ∈ L∞(Td × R)

Let π : Td × Rd −→ Td . Then π∗µt is absolutely continuous.

Comes from the fact that measures of the form

a 7→ Tr(a(x)ρ̃)

for some ρ̃ ∈ L1
+(L2(TΛ)) are absolutely continuous.
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Corollary

(observability) V ∈ C 0(Td × R)
Let Ω ⊂ Td and, for any Λ ⊂ Zd , let ΩΛ be its orthogonal
projection on TΛ.
Assume one the the following statements holds :

Unique continuation for all the equations (SΛ) on ΩΛ × (0,T )

OR : the potential V ∈ C 0(D;R) does not depend on t.

Then the observability inequality holds :

(Obs(Ω,T )) ‖u0‖2
L2(M) ≤ C (T ,Ω)

∫ T

0
‖u(t)‖2

L2(Ω)dt

for all u0.

Unique continuation is known to hold for any open set if V (x , t) is
analytic (Holmgren). If V ∈ C 0 does not depend on t, we can use
an argument of Lebeau relying on unique continuation of
eigenfunctions to show (Obs(Ω,T )) directly.
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Reference to other work :

Absolute continuity of µ : for V = 0 and (u0
n) eigenfunctions of ∆

(stationary solutions), due to Bourgain-Jakobson 1997 using
Fourier series expansion of solutions.

For V = 0, Macià had given a microlocal proof in dimension d = 2.

Burq (2013) shows that the absolute continuity result for V = 0
implies the result for V ∈ L1

loc(Rt ,L(L2(Td))).
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Reference to other work :
The observability result was proven by Jaffard and Haraux (90),
for V = 0 (using Fourier expansions).

Burq-Zworski give a microlocal proof in d = 2 (V = 0 2003,
V 6= 0, continuous, time-independent, 2011).

Our observability result holds in arbitrary dimension, for V
continuous, or Riemann integrable. Bourgain-Burq-Zworski (2012)
manage to lower the regularity to V ∈ L2, in dimension d = 2.
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Extension

This work has been extended by A-Fermanian-Macià to more
general (semiclassical) equations on Td ,

i~
∂u

∂t
= (H(~Dx) + ~2V )u

where we impose the (necessary) condition d2H > 0.

Using locally the Arnold-Liouville theorem, this also implies results
for more general, non-degenerate, completely integrable systems.
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The disc

The Schrödinger equation

(S) i
∂u

∂t
=

(
∆

2
+ V

)
u

uet=0 = u0

in the disc D = {(x , y), x2 + y2 < 1}, with Dirichlet boundary
condition.
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The classical dynamics is the billiard flow :

φt : (x , ξ) 7→ (x + tξ, ξ)

as long as the trajectory stays inside the disc, and reflection on the
boundary.
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A nice set of coordinates for the dynamics is
Φ : (s, θ,E , J) −→ (x , y , ξx , ξy ) where

x = J
E cos θ − s sin θ,

y = J
E sin θ + s cos θ,

ξx = −E sin θ,

ξy = E cos θ.
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In these coordinates, the flow φt reads (away from reflections)

(s, θ,E , J) 7→ (s + tE , θ,E , J)

and the rotation of angle τ around the origin Rτ (generated by J)
reads

(s, θ,E , J) 7→ (s, θ + τ,E , J)
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The angle of the trajectory with the boundary is

α = − arcsin

(
J

E

)
. The equation of the boundary is

s = ± cosα = ±
√

1− J2

E 2
.

The reflection on the boundary reads

(cosα, θ,E , J) 7→ (− cosα, θ + 2α,E , J).

E and J (and α) are conserved.
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A-Macià-Léautaud 2014

Take again (u0
n) a sequence of initial conditions, normalized in

L2(D). We extend is by 0 outside the disc and call un(x , t) the
associated solutions (with Dirichlet boundary condition)
Again we consider

Wun(a) = 〈un, a(x ,Dx , t,Dt)un〉L2(D×R),

a ∈ S0.
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We prove a structure theorem for the limits µ of the sequence Wun .
It has the following consequences :

Theorem

Let (u0
n) be a sequence in L2(D), such that ‖u0

n‖L2(D) = 1 for all n.

Consider the sequence of positive Radon measures νn on D× R,
defined by

νn(dx , dt) = |un(x , t)|2dxdt.

Let ν be any weak-∗ limit of the sequence (νn) : then
ν(dx , dt) = νt(dx)dt where, for almost every t, νt is a probability
measure on D, and νteD is absolutely continuous.
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Unique continuation, observability

Theorem

Let Ω ⊂ D be an open set such that Ω ∩ ∂D 6= ∅ and fix any
T > 0. Assume one the the following statements holds :

the potential V ∈ C∞([0,T ]× D;R) and the open set Ω
satisfy (UCPV ,Ω),

the potential V ∈ C 0(D;R) does not depend on t.

Then there exists C = C (T ,Ω) > 0 such that :

∥∥u0
∥∥2

L2(D)
≤ C

∫ T

0
‖u(t)‖2

L2(Ω) dt, (4.1)

for every initial datum u0 ∈ L2 (D).

u0 ∈ L2(D), u(t)e(0,T )×Ω = 0 =⇒ u0 = 0. (UCPV ,Ω)
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Boundary observability

Theorem

Let Γ be any nonempty subset of ∂D and fix any T > 0. Suppose
one of the following holds :

V ∈ C∞([0,T ]× D) and Γ satisfy (UCPV ,Γ),

V ∈ C 0(D) does not depend on t.

Then there exists C = C (T , Γ) > 0 such that :

∥∥u0
∥∥2

H1(D)
≤ C

∫ T

0
‖∂nu(t)‖2

L2(Γ) dt,

for every initial datum u0 ∈ H1
0 (D).

u0 ∈ H1
0 (D), ∂nue(0,T )×Γ = 0 =⇒ u0 = 0, (UCPV ,Γ)
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Introduction. The case of negatively curved manifolds The flat torus The disc

(UCPV ,Ω) and (UCPV ,Γ) are known to hold when V is analytic in
(t, x) (Holmgren).
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