Toeplitz operators and asymptotic torsion

Jean-Michel Bismut

Université Paris-Sud, Orsay
Paris, le 23 Juin 2016
À la mémoire de Louis Boutet de Monvel
(1) Analytic torsion and combinatorial torsion
(2) Spectral gap and Toeplitz operators

3 The asymptotics of analytic torsion
4 The hypoelliptic Laplacian
(5) Hypoelliptic Laplacian and the trace formula

6 The hypoelliptic Laplacian and the wave equation

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

A flat vector bundle

Analytic torsion and combinatorial torsion

A flat vector bundle

- X compact manifold, $\left(F, \nabla^{F}\right)$ complex flat vector bundle.

Analytic torsion and combinatorial torsion

A flat vector bundle

- X compact manifold, $\left(F, \nabla^{F}\right)$ complex flat vector bundle.
- $\left(\Omega(X, F), d^{X}\right)$ de Rham complex.

A flat vector bundle

- X compact manifold, $\left(F, \nabla^{F}\right)$ complex flat vector bundle.
- $\left(\Omega^{\cdot}(X, F), d^{X}\right)$ de Rham complex.
- $H^{\cdot}(X, F)$ cohomology of $\left(\Omega \cdot(X, F), d^{X}\right)$.

A flat vector bundle

- X compact manifold, $\left(F, \nabla^{F}\right)$ complex flat vector bundle.
- $\left(\Omega \cdot(X, F), d^{X}\right)$ de Rham complex.
- $H^{\cdot}(X, F)$ cohomology of $\left(\Omega \cdot(X, F), d^{X}\right)$.
- For simplicity, we will assume that $H^{\cdot}(X, F)=0$.

A flat vector bundle

- X compact manifold, $\left(F, \nabla^{F}\right)$ complex flat vector bundle.
- $\left(\Omega \cdot(X, F), d^{X}\right)$ de Rham complex.
- $H^{\cdot}(X, F)$ cohomology of $\left(\Omega \cdot(X, F), d^{X}\right)$.
- For simplicity, we will assume that $H^{\cdot}(X, F)=0$.
- Example:
$X=S^{1}, F=\mathbf{C}, \nabla^{F}=d x\left(\frac{\partial}{\partial x}+\alpha\right), \alpha \in \mathbf{C} \backslash 2 i \pi \mathbf{Z}$.

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

Ray-Singer analytic torsion

Analytic torsion and combinatorial torsion

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.

Analytic torsion and combinatorial torsion

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, ker $\square^{X}=0$.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, ker $\square^{X}=0$.
- $\zeta_{p}(s)=\operatorname{Tr}\left[\square_{p}^{X,-s}\right]$.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, ker $\square^{X}=0$.
- $\zeta_{p}(s)=\operatorname{Tr}\left[\square_{p}^{X,-s}\right]$.
- $\vartheta(s)=\sum_{p=0}^{n}(-1)^{p+1} p \zeta_{p}(s)$.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, ker $\square^{X}=0$.
- $\zeta_{p}(s)=\operatorname{Tr}\left[\square_{p}^{X,-s}\right]$.
- $\vartheta(s)=\sum_{p=0}^{n}(-1)^{p+1} p \zeta_{p}(s)$.
- $T_{\mathrm{an}}=\frac{1}{2} \vartheta^{\prime}(0)$ is the analytic torsion.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, $\operatorname{ker} \square^{X}=0$.
- $\zeta_{p}(s)=\operatorname{Tr}\left[\square_{p}^{X,-s}\right]$.
- $\vartheta(s)=\sum_{p=0}^{n}(-1)^{p+1} p \zeta_{p}(s)$.
- $T_{\mathrm{an}}=\frac{1}{2} \vartheta^{\prime}(0)$ is the analytic torsion.
- $T_{\text {an }}=-\frac{1}{2} \int_{0}^{+\infty} \underbrace{\operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda^{\prime}\left(T^{*} X\right)} \exp \left(-t \square^{X}\right)\right] \frac{d t}{t}}_{\text {zeta regularization }}$.

Ray-Singer analytic torsion

- $g^{T X}, g^{F}$ metrics on $T X, F$.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$ Hodge Laplacian.
- Since $H^{\cdot}(X, F)=0$, ker $\square^{X}=0$.
- $\zeta_{p}(s)=\operatorname{Tr}\left[\square_{p}^{X,-s}\right]$.
- $\vartheta(s)=\sum_{p=0}^{n}(-1)^{p+1} p \zeta_{p}(s)$.
- $T_{\mathrm{an}}=\frac{1}{2} \vartheta^{\prime}(0)$ is the analytic torsion.
$T_{\mathrm{an}}=-\frac{1}{2} \int_{0}^{+\infty} \underbrace{\operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda^{\prime}\left(T^{*} X\right)} \exp \left(-t \square^{X}\right)\right] \frac{d t}{t}}_{\text {zeta regularization }}$.
- If $n=\operatorname{dim} X$ is odd, analytic torsion does not depend on the metrics $g^{T X}, g^{F}$.

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

Combinatorial torsion

Combinatorial torsion

- If K triangulation of X, from $\left(C^{\cdot}(K, F), \partial\right), g^{F}$, combinatorial analogue $T_{\text {comb }}(K, F)$.

Combinatorial torsion

- If K triangulation of X, from $(C \cdot(K, F), \partial), g^{F}$, combinatorial analogue $T_{\text {comb }}(K, F)$.
- If g^{F} flat, $T_{\text {comb }}(K, F)$ does not depend on K, defines Reidemeister torsion.

Analytic torsion and combinatorial torsion

The Cheeger-Müller theorem

The Cheeger-Müller theorem

Theorem

(Cheeger-Müller) If g^{F} flat, analytic torsion $=$ Reidemeister torsion.

Analytic torsion and combinatorial torsion

Analytic torsion and Witten deformation

Analytic torsion and combinatorial torsion

Analytic torsion and Witten deformation

- By B.-Zhang, in the general case, there is a locally computable defect.

Analytic torsion and Witten deformation

- By B.-Zhang, in the general case, there is a locally computable defect.
- In the proof of the general formula, if f Morse function, we replace g^{F} by $e^{-2 T f} g^{F}$, and we make $T \rightarrow+\infty$ (Witten deformation).

Analytic torsion and Witten deformation

- By B.-Zhang, in the general case, there is a locally computable defect.
- In the proof of the general formula, if f Morse function, we replace g^{F} by $e^{-2 T f} g^{F}$, and we make $T \rightarrow+\infty$ (Witten deformation).
- As $T \rightarrow+\infty, \square_{T}^{X}=\square^{X}+T^{2}|\nabla f|^{2}+T \ldots$

Analytic torsion and Witten deformation

- By B.-Zhang, in the general case, there is a locally computable defect.
- In the proof of the general formula, if f Morse function, we replace g^{F} by $e^{-2 T f} g^{F}$, and we make $T \rightarrow+\infty$ (Witten deformation).
- As $T \rightarrow+\infty, \square_{T}^{X}=\square^{X}+T^{2}|\nabla f|^{2}+T \ldots$..
- As $T \rightarrow+\infty$, proof localizes near critical points of f.

The Laplacian of a flat vector bundle

The Laplacian of a flat vector bundle

- g^{F} metric on F.

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.
- $\omega^{F}=0$ if an only if g^{F} flat.

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.
- $\omega^{F}=0$ if an only if g^{F} flat.
- $\left|\omega^{F}\right|^{2}=\sum \omega^{F}\left(e_{i}\right)^{2}$ self-adjoint ≥ 0.

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.
- $\omega^{F}=0$ if an only if g^{F} flat.
- $\left|\omega^{F}\right|^{2}=\sum \omega^{F}\left(e_{i}\right)^{2}$ self-adjoint ≥ 0.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$.

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.
- $\omega^{F}=0$ if an only if g^{F} flat.
- $\left|\omega^{F}\right|^{2}=\sum \omega^{F}\left(e_{i}\right)^{2}$ self-adjoint ≥ 0.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$.
- $\square^{X}=-\Delta^{X, u}+\frac{1}{4}\left|\omega^{F}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F}\left(e_{i}\right), \omega^{F}\left(e_{j}\right)\right] \ldots$

The Laplacian of a flat vector bundle

- g^{F} metric on F.
- $\omega^{F}=\left(g^{F}\right)^{-1} \nabla^{F} g^{F} \in \Omega^{(1)}(X$, End $(F))$ local variation of g^{F}.
- $\omega^{F}=0$ if an only if g^{F} flat.
- $\left|\omega^{F}\right|^{2}=\sum \omega^{F}\left(e_{i}\right)^{2}$ self-adjoint ≥ 0.
- $\square^{X}=\left[d^{X}, d^{X *}\right]$.
- $\square^{X}=-\Delta^{X, u}+\frac{1}{4}\left|\omega^{F}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F}\left(e_{i}\right), \omega^{F}\left(e_{j}\right)\right] \ldots$
- If $F=\mathbf{R}, g^{F}=e^{-2 T f}| |^{2}$, $\square_{T}^{X}=-\Delta^{X, u}+T^{2}|\nabla f|^{2}+$.

Spectral gap for the Hodge Laplacian

Spectral gap for the Hodge Laplacian

$\square^{X}=-\Delta^{X, u}+\underbrace{\frac{1}{4}\left|\omega^{F}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F}\left(e_{i}\right), \omega^{F}\left(e_{j}\right)\right]}_{\text {zero order term }} \cdots$

Spectral gap for the Hodge Laplacian

- $\square^{X}=-\Delta^{X, u}+\underbrace{\frac{1}{4}\left|\omega^{F}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F}\left(e_{i}\right), \omega^{F}\left(e_{j}\right)\right]}_{\text {zero order term }} \ldots$.
- Spectral gap will be obtained by expressing the zero order term as a Toeplitz operator.

Complex vector space and cohomology

Complex vector space and cohomology

- F complex vector space, $\mathbf{P}^{F^{*}}=\mathbf{P}\left(F^{*} \oplus \mathbf{C}\right)$ projective space.

Complex vector space and cohomology

- F complex vector space, $\mathbf{P}^{F^{*}}=\mathbf{P}\left(F^{*} \oplus \mathbf{C}\right)$ projective space.
- $\mathbf{P}^{F^{*}}$ carries a canonical line bundle L.

Complex vector space and cohomology

- F complex vector space, $\mathbf{P}^{F^{*}}=\mathbf{P}\left(F^{*} \oplus \mathbf{C}\right)$ projective space.
- $\mathbf{P}^{F^{*}}$ carries a canonical line bundle L.
- Then $F=H^{0}\left(\mathbf{P}^{F^{*}}, L\right)$.

Complex vector space and cohomology

- F complex vector space, $\mathbf{P}^{F^{*}}=\mathbf{P}\left(F^{*} \oplus \mathbf{C}\right)$ projective space.
- $\mathbf{P}^{F^{*}}$ carries a canonical line bundle L.
- Then $F=H^{0}\left(\mathbf{P}^{F^{*}}, L\right)$.
- For $p \in \mathbf{N}, S^{p} F=H^{0}\left(\mathbf{P}^{F^{*}}, L^{p}\right) \operatorname{dim} .\binom{p+n-1}{n-1}$.

Analytic torsion and combinatorial torsion Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian

A family of flat vector bundles

A family of flat vector bundles

- If F flat vector bundle, $\mathbf{P}^{F^{*}}$ flat family of compact complex manifolds.

A family of flat vector bundles

- If F flat vector bundle, $\mathbf{P}^{F^{*}}$ flat family of compact complex manifolds.
- For $p \in \mathbf{N}, S^{p} F=H^{(0)}\left(\mathbf{P}^{F^{*}}, L^{p}\right)$ infinite family of flat vector bundles on X.

A flat family of complex manifolds

A flat family of complex manifolds

- \mathcal{N} flat fibration by compact complex manifolds N on X.

A flat family of complex manifolds

- \mathcal{N} flat fibration by compact complex manifolds N on X.
- L line bundle on \mathcal{N}, holomorphic along N.

A flat family of complex manifolds

- \mathcal{N} flat fibration by compact complex manifolds N on X.
- L line bundle on \mathcal{N}, holomorphic along N.
- $F_{p}=H^{0}\left(N, L^{p}\right)$ flat vector bundle on X.

A flat family of complex manifolds

- \mathcal{N} flat fibration by compact complex manifolds N on X.
- L line bundle on \mathcal{N}, holomorphic along N.
- $F_{p}=H^{0}\left(N, L^{p}\right)$ flat vector bundle on X.
- Family of flat vector bundles $\left.F_{p}\right|_{p \in \mathbf{N}}$ on X.

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators
The asymptotics of analytic torsion
The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

Metrics

Metrics

- g^{L} Hermitian metric on L, with $c_{1}\left(L, g^{L}\right)$ positive along N.

Metrics

- g^{L} Hermitian metric on L, with $c_{1}\left(L, g^{L}\right)$ positive along N.
- g^{N} Hermitian metric on $T N$.

Metrics

- g^{L} Hermitian metric on L, with $c_{1}\left(L, g^{L}\right)$ positive along N.
- g^{N} Hermitian metric on $T N$.
- For $p \in \mathbf{N}$ large enough, $H^{i}\left(N, L^{p}\right)=0$ for $i>0$.

Metrics

- g^{L} Hermitian metric on L, with $c_{1}\left(L, g^{L}\right)$ positive along N.
- g^{N} Hermitian metric on $T N$.
- For $p \in \mathbf{N}$ large enough, $H^{i}\left(N, L^{p}\right)=0$ for $i>0$.
- $g^{F_{p}}$ fibrewise L_{2} metric on $F_{p}=H^{0}\left(N, L^{p}\right)$.

The horizontal variations of the metric g^{L}

The horizontal variations of the metric g^{L}

- $\omega^{L}=\left(g^{L}\right)^{-1} \nabla_{H}^{L} g^{L}$ horizontal variation of g^{L}.

The horizontal variations of the metric g^{L}

- $\omega^{L}=\left(g^{L}\right)^{-1} \nabla_{H}^{L} g^{L}$ horizontal variation of g^{L}.
- ω^{L} like a local gradient vector field on X.

The horizontal variations of the metric g^{L}

- $\omega^{L}=\left(g^{L}\right)^{-1} \nabla_{H}^{L} g^{L}$ horizontal variation of g^{L}.
- ω^{L} like a local gradient vector field on X.
- $\omega^{L} \in C^{\infty}\left(\mathcal{N}, \pi^{*} T^{*} X\right)$.

The horizontal variations of the metric g^{L}

- $\omega^{L}=\left(g^{L}\right)^{-1} \nabla_{H}^{L} g^{L}$ horizontal variation of g^{L}.
- ω^{L} like a local gradient vector field on X.
- $\omega^{L} \in C^{\infty}\left(\mathcal{N}, \pi^{*} T^{*} X\right)$.
- In the sequel, $\theta=-\omega^{L} / 2$.

The horizontal variations of the metric g^{L}

- $\omega^{L}=\left(g^{L}\right)^{-1} \nabla_{H}^{L} g^{L}$ horizontal variation of g^{L}.
- ω^{L} like a local gradient vector field on X.
- $\omega^{L} \in C^{\infty}\left(\mathcal{N}, \pi^{*} T^{*} X\right)$.
- In the sequel, $\theta=-\omega^{L} / 2$.
- θ to be compared with $d f$.

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators
The asymptotics of analytic torsion
The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

A picture

A picture

θ is like a local gradient vector field.
ω^{F} as a Toeplitz operator

- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
- $\omega^{F}=P \omega^{\mathcal{F}} P=$ $\underbrace{T_{\omega \mathcal{F}}}_{\text {plitz operator }}$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
- $\omega^{F}=P \omega^{\mathcal{F}} P=$

Toeplitz operator

- $\theta=-\omega^{L} / 2, \eta^{N}=-\operatorname{div}_{N} / 2$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
- $\omega^{F}=P \omega^{\mathcal{F}} P=$

Toeplitz operator

- $\theta=-\omega^{L} / 2, \eta^{N}=-\operatorname{div}_{N} / 2$.
- $\frac{1}{4}\left|\omega^{F}\right|^{2}=\left|T_{\theta+\eta^{N}}\right|^{2}=\sum T_{\left(\theta+\eta^{N}\right)\left(e_{i}\right)}^{2}$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
- $\omega^{F}=P \omega^{\mathcal{F}} P=$

Toeplitz operator

- $\theta=-\omega^{L} / 2, \eta^{N}=-\operatorname{div}_{N} / 2$.
- $\frac{1}{4}\left|\omega^{F}\right|^{2}=\left|T_{\theta+\eta^{N}}\right|^{2}=\sum T_{\left(\theta+\eta^{N}\right)\left(e_{i}\right)}^{2}$.
- $\frac{1}{4} \omega^{F, 2}=T_{\theta+\eta^{N}}^{2}$.
ω^{F} as a Toeplitz operator
- $\mathcal{F}=C^{\infty}(N, L)$ flat vector bundle on X.
- If $U \in T X, \omega^{\mathcal{F}}(U)=\omega^{L}(U)+\operatorname{div}_{N}(U)$.
- P orthogonal projector on $H^{0}(N, L)$.
- $\omega^{F}=P \omega^{\mathcal{F}} P=$

Toeplitz operator

- $\theta=-\omega^{L} / 2, \eta^{N}=-\operatorname{div}_{N} / 2$.
- $\frac{1}{4}\left|\omega^{F}\right|^{2}=\left|T_{\theta+\eta^{N}}\right|^{2}=\sum T_{\left(\theta+\eta^{N}\right)\left(e_{i}\right)}^{2}$.
- $\frac{1}{4} \omega^{F, 2}=T_{\theta+\eta^{N}}^{2}$.
$\omega^{F, 2}(U, V)=\left[\omega^{F}(U), \omega^{F}(V)\right]$.

Analytic torsion and combinatorial torsion Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References
Replacing L by L^{p}

Replacing L by L^{p}

- For $L^{p}, \theta_{p}=p \theta$.

Replacing L by L^{p}

- For $L^{p}, \theta_{p}=p \theta$.
- $\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}=p^{2}\left|T_{\theta+\eta^{N} / p, p}\right|^{2}$.

Replacing L by L^{p}

- For $L^{p}, \theta_{p}=p \theta$.
- $\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}=p^{2}\left|T_{\theta+\eta^{N} / p, p}\right|^{2}$.
- $\frac{1}{4} \omega^{F_{p}, 2}=p^{2} T_{\theta+\eta_{N} / p, p}^{2}$.

The Toeplitz operators as $p \rightarrow+\infty$

The Toeplitz operators as $p \rightarrow+\infty$

- Results of Boutet de Monvel, Guillemin, Sjöstrand, Berezin, Ma-Marinescu.

The Toeplitz operators as $p \rightarrow+\infty$

- Results of Boutet de Monvel, Guillemin, Sjöstrand, Berezin, Ma-Marinescu.
- As $p \rightarrow+\infty, \frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2} \simeq T_{|\theta|^{2}, p}+\mathcal{O}(1 / p) \ldots$

The Toeplitz operators as $p \rightarrow+\infty$

- Results of Boutet de Monvel, Guillemin, Sjöstrand, Berezin, Ma-Marinescu.
- As $p \rightarrow+\infty, \frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2} \simeq T_{|\theta|^{2}, p}+\mathcal{O}(1 / p) \ldots$
- \ldots and $\frac{1}{4 p} \omega^{F_{p}, 2}=T_{\theta^{* 2}, p}+\mathcal{O}(1 / p)$.

The Toeplitz operators as $p \rightarrow+\infty$

- Results of Boutet de Monvel, Guillemin, Sjöstrand, Berezin, Ma-Marinescu.
- As $p \rightarrow+\infty, \frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2} \simeq T_{|\theta|^{2}, p}+\mathcal{O}(1 / p) \ldots$
- \ldots and $\frac{1}{4 p} \omega^{F_{p}, 2}=T_{\theta^{* 2}, p}+\mathcal{O}(1 / p)$.
- $\theta^{* 2}$ Poisson bracket $\theta^{* 2}(U, V)=\{\theta(U), \theta(V)\}$.

Back to the spectral gap

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$.

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$
- As $p \rightarrow+\infty$, the leading term is $p^{2} T_{|\theta|^{2}, p}$.

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$.
- As $p \rightarrow+\infty$, the leading term is $p^{2} T_{|\theta|^{2}, p}$.
- Compare with $T^{2}|\nabla f|^{2}$.

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$
- As $p \rightarrow+\infty$, the leading term is $p^{2} T_{|\theta|^{2}, p}$.
- Compare with $T^{2}|\nabla f|^{2}$.
- g^{L} nondegenerate if $|\theta|^{2}>0$.

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$
- As $p \rightarrow+\infty$, the leading term is $p^{2} T_{|\theta|^{2}, p}$.
- Compare with $T^{2}|\nabla f|^{2}$.
- g^{L} nondegenerate if $|\theta|^{2}>0$.
- Lowest eigenvalue $\lambda \geq C p^{2}-C^{\prime}$.

Back to the spectral gap

- $\square_{p}^{X}=-\Delta_{p}^{X, u}+\frac{1}{4}\left|\omega^{F_{p}}\right|^{2}+\frac{1}{2} e^{i} i_{e_{j}}\left[\omega^{F_{p}}\left(e_{i}\right), \omega^{F_{p}}\left(e_{j}\right)\right] \ldots$
- As $p \rightarrow+\infty$, the leading term is $p^{2} T_{|\theta|^{2}, p}$.
- Compare with $T^{2}|\nabla f|^{2}$.
- g^{L} nondegenerate if $|\theta|^{2}>0$.
- Lowest eigenvalue $\lambda \geq C p^{2}-C^{\prime}$.
- For $p \in \mathbf{N}$ large enough, $H^{\cdot}\left(X, F_{p}\right)=0$.

The behaviour of analytic torsion as $p \rightarrow+\infty$

The behaviour of analytic torsion as $p \rightarrow+\infty$

- Assume g^{L} is nondegenerate.
- $\frac{1}{p^{2}} \square_{p}^{X}=-\frac{1}{p^{2}} \Delta_{p}^{X, u}+\frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2}+\ldots$

The behaviour of analytic torsion as $p \rightarrow+\infty$

- Assume g^{L} is nondegenerate.
- $\frac{1}{p^{2}} \square_{p}^{X}=-\frac{1}{p^{2}} \Delta_{p}^{X, u}+\frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2}+\ldots$
- As $p \rightarrow+\infty$, the analysis of $\int_{0}^{+\infty} \operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda \cdot\left(T^{*} X\right)} \exp \left(-t \square^{X} / p^{2}\right)\right] \frac{d t}{t}$ becomes local on X (local index theory)...

The behaviour of analytic torsion as $p \rightarrow+\infty$

- Assume g^{L} is nondegenerate.
- $\frac{1}{p^{2}} \square_{p}^{X}=-\frac{1}{p^{2}} \Delta_{p}^{X, u}+\frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2}+\ldots$
- As $p \rightarrow+\infty$, the analysis of $\int_{0}^{+\infty} \operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda^{\prime}\left(T^{*} X\right)} \exp \left(-t \square^{X} / p^{2}\right)\right] \frac{d t}{t}$ becomes local on X (local index theory)...
- ... and local on fibre N (Toeplitz operators).

The behaviour of analytic torsion as $p \rightarrow+\infty$

- Assume g^{L} is nondegenerate.
- $\frac{1}{p^{2}} \square_{p}^{X}=-\frac{1}{p^{2}} \Delta_{p}^{X, u}+\frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2}+\ldots$
- As $p \rightarrow+\infty$, the analysis of $\int_{0}^{+\infty} \operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda \cdot\left(T^{*} X\right)} \exp \left(-t \square^{X} / p^{2}\right)\right] \frac{d t}{t}$ becomes local on X (local index theory)...
- ... and local on fibre N (Toeplitz operators).
- As $p \rightarrow+\infty, \operatorname{Tr}\left[T_{\mathcal{H}, p}\right]=(2 \pi)^{-n} \int_{N} \mathcal{H} d v_{N} p^{n}+\mathcal{O}\left(p^{n-1}\right)$.

The behaviour of analytic torsion as $p \rightarrow+\infty$

- Assume g^{L} is nondegenerate.
- $\frac{1}{p^{2}} \square_{p}^{X}=-\frac{1}{p^{2}} \Delta_{p}^{X, u}+\frac{1}{4 p^{2}}\left|\omega^{F_{p}}\right|^{2}+\ldots$
- As $p \rightarrow+\infty$, the analysis of $\int_{0}^{+\infty} \operatorname{Tr}_{\mathrm{s}}\left[N^{\Lambda^{\prime}\left(T^{*} X\right)} \exp \left(-t \square^{X} / p^{2}\right)\right] \frac{d t}{t}$ becomes local on X (local index theory)...
- ... and local on fibre N (Toeplitz operators).
- As $p \rightarrow+\infty, \operatorname{Tr}\left[T_{\mathcal{H}, p}\right]=(2 \pi)^{-n} \int_{N} \mathcal{H} d v_{N} p^{n}+\mathcal{O}\left(p^{n-1}\right)$.
- In the end, the fibre wins.

The W-invariant

The W-invariant

- Assume X of odd dimension and θ nondegenerate.

The W-invariant

- Assume X of odd dimension and θ nondegenerate.
- ψ solid angle form on $T X$.

The W-invariant

- Assume X of odd dimension and θ nondegenerate.
- ψ solid angle form on $T X$.
- $W=\int_{\mathcal{N}} \underbrace{\theta \sigma_{\overparen{\theta}}^{*} \psi \exp \left(c_{1}\left(L, g^{L}\right)\right)}_{\text {depend on } g^{T X}, g^{L}}$.

The W-invariant

- Assume X of odd dimension and θ nondegenerate.
- ψ solid angle form on $T X$.
- $W=\int_{\mathcal{N}} \underbrace{\theta \sigma_{\overparen{\theta}}^{*} \psi \exp \left(c_{1}\left(L, g^{L}\right)\right)}_{\text {depend on } g^{T X}, g^{L}}$.
- W obtained by integrating a local quantity.

The W-invariant

- Assume X of odd dimension and θ nondegenerate.
- ψ solid angle form on $T X$.
- $W=\int_{\mathcal{N}} \underbrace{\theta \sigma_{\hat{\theta}}^{*} \psi \exp \left(c_{1}\left(L, g^{L}\right)\right)}_{\text {depend on } g^{T X}, g^{L}}$.
- W obtained by integrating a local quantity.
- W does not depend on the metrics on $g^{T X}, g^{L}$.

The W-invariant

- Assume X of odd dimension and θ nondegenerate.
- ψ solid angle form on $T X$.
- $W=\int_{\mathcal{N}} \underbrace{\theta \sigma_{\overparen{\theta}}^{*} \psi \exp \left(c_{1}\left(L, g^{L}\right)\right)}_{\text {depend on } g^{T X}, g^{L}}$.
- W obtained by integrating a local quantity.
- W does not depend on the metrics on $g^{T X}, g^{L}$.

Theorem

(B., Ma, Zhang) As $p \rightarrow+\infty$, if $n=\operatorname{dim} N$,

$$
p^{-n-1} T_{\mathrm{an}, p}=W+\mathcal{O}(1 / p) .
$$

Applications

Applications

- As shown by Bergeron and Venkatesh...

Applications

- As shown by Bergeron and Venkatesh...
- ... using the Cheeger-Müller theorem, the asymptotics of $T_{\mathrm{an}, \mathrm{p}}$ gives information on the order of $H_{\text {tor }}\left(X, F_{p}\right)$.

Applications

- As shown by Bergeron and Venkatesh...
- ... using the Cheeger-Müller theorem, the asymptotics of $T_{\mathrm{an}, \mathrm{p}}$ gives information on the order of $H_{\text {tor }}\left(X, F_{p}\right)$.
- Nondegeneracy of g^{L} cannot be seen combinatorially.

Applications

- As shown by Bergeron and Venkatesh...
- ... using the Cheeger-Müller theorem, the asymptotics of $T_{\mathrm{an}, \mathrm{p}}$ gives information on the order of $H_{\text {tor }}\left(X, F_{p}\right)$.
- Nondegeneracy of g^{L} cannot be seen combinatorially.
- Asymptotic combinatorial complex may have small and large eigenvalues.

Applications

- As shown by Bergeron and Venkatesh...
- ... using the Cheeger-Müller theorem, the asymptotics of $T_{\text {an,p }}$ gives information on the order of $H_{\text {tor }}\left(X, F_{p}\right)$.
- Nondegeneracy of g^{L} cannot be seen combinatorially.
- Asymptotic combinatorial complex may have small and large eigenvalues.
- Nondegeneracy condition can be checked easily on locally symmetric spaces (B-Ma-Zhang, Müller-Pfaff).

Applications

- As shown by Bergeron and Venkatesh...
- ... using the Cheeger-Müller theorem, the asymptotics of $T_{\mathrm{an}, \mathrm{p}}$ gives information on the order of $H_{\text {tor }}\left(X, F_{p}\right)$.
- Nondegeneracy of g^{L} cannot be seen combinatorially.
- Asymptotic combinatorial complex may have small and large eigenvalues.
- Nondegeneracy condition can be checked easily on locally symmetric spaces (B-Ma-Zhang, Müller-Pfaff).
- Formula for W related to B-Zhang formula

$$
T_{\mathrm{comb}}-T_{\mathrm{an}}=\int_{X} \frac{1}{2} \operatorname{Tr}\left[\omega^{F}\right](\nabla f)^{*} \psi .
$$

The total space of the tangent bundle

The total space of the tangent bundle

- X compact Riemannian, \mathcal{X} total space of $T X$.

The total space of the tangent bundle

- X compact Riemannian, \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{V}+|Y|^{2}-n\right)$ fibrewise harmonic oscillator.

The total space of the tangent bundle

- X compact Riemannian, \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{V}+|Y|^{2}-n\right)$ fibrewise harmonic oscillator.
- $\operatorname{ker} H=\exp \left(-|Y|^{2} / 2\right) \otimes C^{\infty}(X, \mathbf{R}) \simeq C^{\infty}(X, \mathbf{R})$.

The total space of the tangent bundle

- X compact Riemannian, \mathcal{X} total space of $T X$.
- $H=\frac{1}{2}\left(-\Delta^{V}+|Y|^{2}-n\right)$ fibrewise harmonic oscillator.
- $\operatorname{ker} H=\exp \left(-|Y|^{2} / 2\right) \otimes C^{\infty}(X, \mathbf{R}) \simeq C^{\infty}(X, \mathbf{R})$.
- P (fibrewise) orthogonal projection on ker H.

The elliptic Laplacian as a Toeplitz operator

The elliptic Laplacian as a Toeplitz operator

- $Z \simeq \sum Y^{i} \frac{\partial}{\partial x^{i}}$ geodesic flow.

The elliptic Laplacian as a Toeplitz operator

- $Z \simeq \sum Y^{i} \frac{\partial}{\partial x^{i}}$ geodesic flow.
- Then $P Z P=0$.

The elliptic Laplacian as a Toeplitz operator

- $Z \simeq \sum Y^{i} \frac{\partial}{\partial x^{i}}$ geodesic flow.
- Then $P Z P=0$.
- Also $P Z^{2} P=\frac{1}{2} \Delta^{X}$.

The elliptic Laplacian as a Toeplitz operator

- $Z \simeq \sum Y^{i} \frac{\partial}{\partial x^{i}}$ geodesic flow.
- Then $P Z P=0$.
- Also $P Z^{2} P=\frac{1}{2} \Delta^{X}$.
- More precisely, $P Z H^{-1} Z P=\frac{1}{2} \Delta^{X}$.

The scalar hypoelliptic Laplacian

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- L_{b} hypoelliptic, not classically self-adjoint.

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- L_{b} hypoelliptic, not classically self-adjoint.
- L_{b} self-adjoint with respect to
$B\left((f, g)=\int_{\mathcal{X}} f(x, Y) g(x,-Y) d x d Y\right.$ (replace $U(\infty)$ by $U(\infty, \infty)$.

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- L_{b} hypoelliptic, not classically self-adjoint.
- L_{b} self-adjoint with respect to
$B\left((f, g)=\int_{\mathcal{X}} f(x, Y) g(x,-Y) d x d Y\right.$ (replace $U(\infty)$ by $U(\infty, \infty))$.
- Matrix structure of L_{b}^{X} with respect to splitting $L_{2}=\operatorname{ker} H \oplus \operatorname{ker} H^{\perp}$

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- L_{b} hypoelliptic, not classically self-adjoint.
- L_{b} self-adjoint with respect to
$B\left((f, g)=\int_{\mathcal{X}} f(x, Y) g(x,-Y) d x d Y\right.$ (replace $U(\infty)$ by $U(\infty, \infty))$.
- Matrix structure of L_{b}^{X} with respect to splitting $L_{2}=\operatorname{ker} H \oplus \operatorname{ker} H^{\perp}$

$$
L_{b}^{X} \simeq\left[\begin{array}{cc}
0 & -Z / b \\
-Z / b & H / b^{2}
\end{array}\right]
$$

The scalar hypoelliptic Laplacian

- $L_{b}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- L_{b} hypoelliptic, not classically self-adjoint.
- L_{b} self-adjoint with respect to
$B\left((f, g)=\int_{\mathcal{X}} f(x, Y) g(x,-Y) d x d Y\right.$ (replace $U(\infty)$ by $U(\infty, \infty))$.
- Matrix structure of L_{b}^{X} with respect to splitting $L_{2}=\operatorname{ker} H \oplus \operatorname{ker} H^{\perp}$

$$
L_{b}^{X} \simeq\left[\begin{array}{cc}
0 & -Z / b \\
-Z / b & H / b^{2}
\end{array}\right]
$$

- Let us pretend L_{b}^{X} finite dimensional matrix.

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

- Asymptotics of resolvent $\left(\lambda-L_{b}^{X}\right)^{-1}$ as $b \rightarrow 0$ by Gauss method.

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

- Asymptotics of resolvent $\left(\lambda-L_{b}^{X}\right)^{-1}$ as $b \rightarrow 0$ by Gauss method.
- As $b \rightarrow 0$, if P orthogonal projector on ker H

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

- Asymptotics of resolvent $\left(\lambda-L_{b}^{X}\right)^{-1}$ as $b \rightarrow 0$ by Gauss method.
- As $b \rightarrow 0$, if P orthogonal projector on ker H

$$
\left(\lambda-L_{b}^{X}\right)^{-1} \simeq\left[\begin{array}{cc}
\left(\lambda+P Z H^{-1} Z P\right)^{-1} & 0 \\
0 & 0
\end{array}\right] .
$$

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

- Asymptotics of resolvent $\left(\lambda-L_{b}^{X}\right)^{-1}$ as $b \rightarrow 0$ by Gauss method.
- As $b \rightarrow 0$, if P orthogonal projector on ker H

$$
\left(\lambda-L_{b}^{X}\right)^{-1} \simeq\left[\begin{array}{cc}
\left(\lambda+P Z H^{-1} Z P\right)^{-1} & 0 \\
0 & 0
\end{array}\right] .
$$

- We saw before that $P Z H^{-1} Z P=\frac{1}{2} \Delta^{X}$.

As $b \rightarrow 0, L_{b}^{X}$ collapses to $-\frac{1}{2} \Delta^{X}$

- Asymptotics of resolvent $\left(\lambda-L_{b}^{X}\right)^{-1}$ as $b \rightarrow 0$ by Gauss method.
- As $b \rightarrow 0$, if P orthogonal projector on ker H

$$
\left(\lambda-L_{b}^{X}\right)^{-1} \simeq\left[\begin{array}{cc}
\left(\lambda+P Z H^{-1} Z P\right)^{-1} & 0 \\
0 & 0
\end{array}\right] .
$$

- We saw before that $P Z H^{-1} Z P=\frac{1}{2} \Delta^{X}$.
- $\left(\lambda-L_{b}^{X}\right)^{-1} \rightarrow P\left(\lambda+\frac{1}{2} \Delta^{X}\right)^{-1} P$ by collapsing of \mathcal{X} on X.

Analytic torsion and combinatorial torsion Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

The limit $b \rightarrow+\infty$

The limit $b \rightarrow+\infty$

- As $b \rightarrow+\infty, L_{b} \simeq \frac{1}{2}|Y|^{2}-Z$.

The limit $b \rightarrow+\infty$

- As $b \rightarrow+\infty, L_{b} \simeq \frac{1}{2}|Y|^{2}-Z$.
- Heat propagates more along geodesic flow.

The hypoelliptic analytic torsion

The hypoelliptic analytic torsion

There is a canonical deformation of $\square^{X} / 2$ to a hypoelliptic Hodge Laplacian \mathcal{L}_{b}^{X}.

The hypoelliptic analytic torsion

There is a canonical deformation of $\square^{X} / 2$ to a hypoelliptic Hodge Laplacian \mathcal{L}_{b}^{X}.

Theorem

(B, Lebeau) For $b>0, T_{\mathrm{an}}=T_{\mathrm{an}, b}$.

Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

The case of S^{1}

The case of S^{1}

- If $X=S^{1}, \operatorname{Sp} L_{b}=\left\{2 k^{2} \pi^{2}\right\}_{k \in \mathbf{Z}}+\frac{\mathrm{N}}{b^{2}}$.

The case of S^{1}

- If $X=S^{1}, \operatorname{Sp} L_{b}=\left\{2 k^{2} \pi^{2}\right\}_{k \in \mathbf{Z}}+\frac{\mathbf{N}}{b^{2}}$.
- The spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded in the spectrum of L_{b}.

The case of S^{1}

- If $X=S^{1}, \operatorname{Sp} L_{b}=\left\{2 k^{2} \pi^{2}\right\}_{k \in \mathbf{Z}}+\frac{\mathrm{N}}{b^{2}}$.
- The spectrum of $-\Delta^{S^{1}} / 2$ remains rigidly embedded in the spectrum of L_{b}.
- Poisson formula for the heat kernel can be proved using the hypoelliptic interpolation.

Hypoelliptic Laplacian on locally symmetric spaces

Hypoelliptic Laplacian on locally symmetric spaces

- Assume X to be compact and locally symmetric (constant curvature).

Hypoelliptic Laplacian on locally symmetric spaces

- Assume X to be compact and locally symmetric (constant curvature).
- There is a version of the hypoelliptic Laplacian L_{b}^{X} which has the same properties as L_{b} on S^{1}.

Hypoelliptic Laplacian on locally symmetric spaces

- Assume X to be compact and locally symmetric (constant curvature).
- There is a version of the hypoelliptic Laplacian L_{b}^{X} which has the same properties as L_{b} on S^{1}.
- The spectrum of $-\frac{1}{2}\left(\Delta^{X}+c\right)$ remains rigidly embedded in the spectrum of L_{b}^{X}.

Hypoelliptic Laplacian on locally symmetric spaces

- Assume X to be compact and locally symmetric (constant curvature).
- There is a version of the hypoelliptic Laplacian L_{b}^{X} which has the same properties as L_{b} on S^{1}.
- The spectrum of $-\frac{1}{2}\left(\Delta^{X}+c\right)$ remains rigidly embedded in the spectrum of L_{b}^{X}.
- If X Riemann surface, L_{b}^{X} acts on a manifold of dimension 5

Hypoelliptic Laplacian on locally symmetric spaces

- Assume X to be compact and locally symmetric (constant curvature).
- There is a version of the hypoelliptic Laplacian L_{b}^{X} which has the same properties as L_{b} on S^{1}.
- The spectrum of $-\frac{1}{2}\left(\Delta^{X}+c\right)$ remains rigidly embedded in the spectrum of L_{b}^{X}.
- If X Riemann surface, L_{b}^{X} acts on a manifold of dimension $5=2+3$.

Analytic torsion and combinatorial torsion Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

A formula for L_{b}^{X}

A formula for L_{b}^{X}

$$
L_{b}^{X}=\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda^{\prime}\left(T^{*} X \oplus N^{*}\right)}}{b^{2}}
$$

A formula for L_{b}^{X}

$$
\begin{aligned}
L_{b}^{X} & =\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda \cdot\left(T^{*} X \oplus N^{*}\right)}}{b^{2}} \\
& +\frac{1}{b}\left(\nabla_{Y T X}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)\right) .
\end{aligned}
$$

A formula for L_{b}^{X}

$$
\begin{aligned}
L_{b}^{X} & =\frac{1}{2}\left|\left[Y^{N}, Y^{T X}\right]\right|^{2}+\frac{1}{2 b^{2}}\left(-\Delta^{T X \oplus N}+|Y|^{2}-n\right)+\frac{N^{\Lambda}\left(T^{*} X \oplus N^{*}\right)}{b^{2}} \\
& +\frac{1}{b}\left(\nabla_{Y^{T X}}+\widehat{c}\left(\operatorname{ad}\left(Y^{T X}\right)\right)-c\left(\operatorname{ad}\left(Y^{T X}\right)+i \theta \operatorname{ad}\left(Y^{N}\right)\right)\right) .
\end{aligned}
$$

L_{b}^{X} is a deformation of $-\frac{1}{2}\left(\Delta^{X}+c\right)$.

The preservation of the trace

The preservation of the trace

Theorem

B. For any $t>0, b>0$

$$
\operatorname{Tr}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right]=\operatorname{Tr}_{\mathrm{s}}\left[\exp \left(-t \mathcal{L}_{b}^{X}\right)\right]\right.
$$

Analytic torsion and combinatorial torsion Spectral gap and Toeplitz operators The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula The hypoelliptic Laplacian and the wave equation

References

The limit as $b \rightarrow+\infty$

The limit as $b \rightarrow+\infty$

- Preservation of the orbital integrals.

The limit as $b \rightarrow+\infty$

- Preservation of the orbital integrals.
- As $b \rightarrow+\infty$, concentration on closed geodesics.

Semisimple orbital integrals

Semisimple orbital integrals

$$
\begin{aligned}
& \operatorname{Tr}^{[r]]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \\
& \qquad \begin{aligned}
& \int_{\mathfrak{t}(\gamma)} J_{\gamma}\left(Y_{0}^{t}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(-|a|^{2} / 2 t\right)\right. \\
&\left.(2 \pi t)^{p / 2}\right)\left.\exp \left(-i \rho^{E}\left(Y_{0}^{t}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{t}\right|^{2} / 2 t\right) \frac{d Y_{0}^{e}}{(2 \pi t)^{q / 2}} .
\end{aligned}
\end{aligned}
$$

Semisimple orbital integrals

$$
\begin{aligned}
& \operatorname{Tr}^{[\gamma]}\left[\exp \left(t\left(\Delta^{X}+c\right) / 2\right)\right]= \frac{\exp \left(-|a|^{2} / 2 t\right)}{(2 \pi t)^{p / 2}} \\
& \int_{\mathfrak{k}(\gamma)} J_{\gamma}\left(Y_{0}^{\mathfrak{k}}\right) \operatorname{Tr}^{E}\left[\rho^{E}\left(k^{-1}\right) \exp \left(-i \rho^{E}\left(Y_{0}^{\mathfrak{k}}\right)\right)\right] \\
& \exp \left(-\left|Y_{0}^{\mathfrak{k}}\right|^{2} / 2 t\right) \frac{d Y_{0}^{\mathfrak{k}}}{(2 \pi t)^{q / 2}}
\end{aligned}
$$

- Like fixed point formulas by Atiyah-Bott

$$
L(g)=\int_{X_{g}} \widehat{A}_{g}(T X) \operatorname{ch}_{g}(E) .
$$

The function $J_{\gamma}\left(Y_{0}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{k}(\gamma)$

The function $J_{\gamma}\left(Y_{0}\right), Y_{0}^{\mathfrak{k}} \in \mathfrak{k}(\gamma)$

$$
\begin{aligned}
& J_{\gamma}\left(Y_{0}^{\mathrm{t}}\right)=\frac{1}{\left.|\operatorname{det}(1-\operatorname{Ad}(\gamma))|_{3_{0}}\right|^{1 / 2}} \frac{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathrm{t}}\right) \operatorname{lp}_{\mathrm{p}}(\gamma)\right)}{\widehat{A}\left(\operatorname{iad}\left(Y_{0}^{\mathrm{t}}\right)_{\mathrm{e}(\gamma)}\right)} \\
& {\left[\frac{1}{\left.\operatorname{det}\left(1-\operatorname{Ad}\left(k^{-1}\right)\right)\right|_{z_{\dot{\circ}}^{\perp}(\gamma)}}\right.} \\
& \left.\frac{\left.\operatorname{det}\left(1-\exp \left(-i \operatorname{ad}\left(Y_{0}^{\ell}\right)\right) \operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathfrak{P}_{\mathrm{\rho}}(\gamma)}}{\left.\operatorname{det}\left(1-\exp \left(-i \operatorname{ad}\left(Y_{0}^{\mathrm{\ell}}\right)\right) \operatorname{Ad}\left(k^{-1}\right)\right)\right|_{\mathfrak{p}_{\mathrm{p}}(\gamma)}}\right]^{1 / 2} .
\end{aligned}
$$

The geodesic flow

The geodesic flow

- Z geodesic flow.

The geodesic flow

- Z geodesic flow.
- In local geodesic coordinates, $Z=\sum Y^{i} \frac{\partial}{\partial x^{i}}$.

The geodesic flow

- Z geodesic flow.
- In local geodesic coordinates, $Z=\sum Y^{i} \frac{\partial}{\partial x^{i}}$.
- $\sigma(Z)=\sqrt{-1}\langle Y, \xi\rangle \ldots$

The geodesic flow

- Z geodesic flow.
- In local geodesic coordinates, $Z=\sum Y^{i} \frac{\partial}{\partial x^{i}}$.
- $\sigma(Z)=\sqrt{-1}\langle Y, \xi\rangle \ldots$
- ... which is also the symbol of Fourier transform.

The geodesic flow

- Z geodesic flow.
- In local geodesic coordinates, $Z=\sum Y^{i} \frac{\partial}{\partial x^{i}}$.
- $\sigma(Z)=\sqrt{-1}\langle Y, \xi\rangle \ldots$
- ... which is also the symbol of Fourier transform.
- Hypoelliptic Laplacian gives dynamic interpretation of Fourier transform.

Finite propagation speed

Finite propagation speed

- Heat flow $\exp \left(t \Delta^{X} / 2\right)$ has infinite propagation speed.

Finite propagation speed

- Heat flow $\exp \left(t \Delta^{X} / 2\right)$ has infinite propagation speed.
- Geodesic flow has finite propagation speed.

Finite propagation speed

- Heat flow $\exp \left(t \Delta^{X} / 2\right)$ has infinite propagation speed.
- Geodesic flow has finite propagation speed.
- How does the hypoelliptic heat flow propagate?

The projection of the hypoelliptic heat flow

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- For $t>0, q_{b, t}$ smooth kernel for $\exp \left(-t L_{b}^{X}\right)$.

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- For $t>0, q_{b, t}$ smooth kernel for $\exp \left(-t L_{b}^{X}\right)$.
- By B, Lebeau, as $b \rightarrow 0, q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) \rightarrow$ $\pi^{-n / 2} p_{t}\left(x, x^{\prime}\right) \exp \left(-\frac{1}{2}\left(|Y|^{2}+\left|Y^{\prime}\right|^{2}\right)\right)$.

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- For $t>0, q_{b, t}$ smooth kernel for $\exp \left(-t L_{b}^{X}\right)$.
- By B, Lebeau, as $b \rightarrow 0, q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) \rightarrow$ $\pi^{-n / 2} p_{t}\left(x, x^{\prime}\right) \exp \left(-\frac{1}{2}\left(|Y|^{2}+\left|Y^{\prime}\right|^{2}\right)\right)$.
- $r_{b, t}\left((x, Y), x^{\prime}\right)=\int_{T X} q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) d Y^{\prime}$.

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- For $t>0, q_{b, t}$ smooth kernel for $\exp \left(-t L_{b}^{X}\right)$.
- By B, Lebeau, as $b \rightarrow 0, q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) \rightarrow$ $\pi^{-n / 2} p_{t}\left(x, x^{\prime}\right) \exp \left(-\frac{1}{2}\left(|Y|^{2}+\left|Y^{\prime}\right|^{2}\right)\right)$.
- $r_{b, t}\left((x, Y), x^{\prime}\right)=\int_{T X} q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) d Y^{\prime}$.
- As $b \rightarrow 0$, in $x^{\prime}, r_{b, t}$ approximates solution of hyperbolic wave equation with propagation speed $1 / b$.

The projection of the hypoelliptic heat flow

- $L_{b}^{X}=\frac{H}{b^{2}}-\frac{Z}{b}$.
- For $t>0, q_{b, t}$ smooth kernel for $\exp \left(-t L_{b}^{X}\right)$.
- By B, Lebeau, as $b \rightarrow 0, q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) \rightarrow$ $\pi^{-n / 2} p_{t}\left(x, x^{\prime}\right) \exp \left(-\frac{1}{2}\left(|Y|^{2}+\left|Y^{\prime}\right|^{2}\right)\right)$.
- $r_{b, t}\left((x, Y), x^{\prime}\right)=\int_{T X} q_{b, t}\left((x, Y),\left(x^{\prime}, Y^{\prime}\right)\right) d Y^{\prime}$.
- As $b \rightarrow 0$, in $x^{\prime}, r_{b, t}$ approximates solution of hyperbolic wave equation with propagation speed $1 / b$.
- The heat flow $\exp \left(-t L_{b}^{X}\right)$ projects to an "intelligent" wave programmed to look for closed geodesics as $b \rightarrow+\infty$.

目 L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99, Princeton University Press, Princeton, NJ, 1981. MR 620794 (85j:58141)

固 J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller, Astérisque (1992), no. 205, 235, With an appendix by François Laudenbach. MR 93j:58138

E J.-M. Bismut and G. Lebeau, The hypoelliptic Laplacian and Ray-Singer metrics, Annals of Mathematics Studies, vol. 167, Princeton University Press, Princeton, NJ, 2008. MR MR2441523

目 J.-M. Bismut, Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080

雷 N. Bergeron and A. Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391-447. MR 3028790

E J.-M. Bismut, X. Ma, and W. Zhang, Asymptotic torsion and Toeplitz operators, J. Inst. Math. Jussieu (2015), 1-127.

