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A flat vector bundle

X compact manifold,
(
F,∇F

)
complex flat vector

bundle.(
Ω· (X,F ) , dX

)
de Rham complex.

H · (X,F ) cohomology of
(
Ω· (X,F ) , dX

)
.

For simplicity, we will assume that H · (X,F ) = 0.

Example:
X = S1, F = C,∇F = dx

(
∂
∂x

+ α
)
, α ∈ C \ 2iπZ.
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Ray-Singer analytic torsion

gTX , gF metrics on TX,F .

�X =
[
dX , dX∗

]
Hodge Laplacian.

Since H · (X,F ) = 0, ker�X = 0.

ζp (s) = Tr
[
�X,−s
p

]
.

ϑ (s) =
∑n

p=0 (−1)p+1 pζp (s).

Tan = 1
2
ϑ′ (0) is the analytic torsion.

Tan = −1
2

∫ +∞
0

Trs

[
NΛ·(T ∗X) exp

(
−t�X

)] dt
t︸ ︷︷ ︸

zeta regularization

.

If n = dimX is odd, analytic torsion does not depend
on the metrics gTX , gF .
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Combinatorial torsion

If K triangulation of X, from (C · (K,F ) , ∂) , gF ,
combinatorial analogue Tcomb (K,F ).

If gF flat, Tcomb (K,F ) does not depend on K, defines
Reidemeister torsion.
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The Cheeger-Müller theorem

Theorem

(Cheeger-Müller) If gF flat, analytic torsion = Reidemeister
torsion.
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Analytic torsion and Witten deformation

By B.-Zhang, in the general case, there is a locally
computable defect.

In the proof of the general formula, if f Morse
function, we replace gF by e−2TfgF , and we make
T → +∞ (Witten deformation).

As T → +∞, �X
T = �X + T 2 |∇f |2 + T . . ..

As T → +∞, proof localizes near critical points of f .
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The Laplacian of a flat vector bundle

gF metric on F .

ωF =
(
gF
)−1∇FgF ∈ Ω(1) (X,End (F )) local variation

of gF .

ωF = 0 if an only if gF flat.∣∣ωF ∣∣2 =
∑
ωF (ei)

2 self-adjoint ≥ 0.

�X =
[
dX , dX∗

]
.

�X = −∆X,u + 1
4

∣∣ωF ∣∣2 + 1
2
eiiej

[
ωF (ei) , ω

F (ej)
]
. . .

If F = R, gF = e−2Tf | |2, �X
T = −∆X,u + T 2 |∇f |2 + ·.
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F complex vector space, PF ∗ = P (F ∗ ⊕C) projective
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PF ∗ carries a canonical line bundle L.

Then F = H0
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PF ∗ , L
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Metrics

gL Hermitian metric on L, with c1

(
L, gL

)
positive

along N .

gN Hermitian metric on TN .

For p ∈ N large enough, H i (N,Lp) = 0 for i > 0.

gFp fibrewise L2 metric on Fp = H0 (N,Lp).
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The horizontal variations of the metric gL

ωL =
(
gL
)−1∇L

Hg
L horizontal variation of gL.

ωL like a local gradient vector field on X.

ωL ∈ C∞ (N , π∗T ∗X).

In the sequel, θ = −ωL/2.

θ to be compared with df .
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ωF as a Toeplitz operator

F = C∞ (N,L) flat vector bundle on X.

If U ∈ TX, ωF (U) = ωL (U) + divN (U).

P orthogonal projector on H0 (N,L).

ωF = PωFP = TωF︸︷︷︸
Toeplitz operator

.

θ = −ωL/2, ηN = −divN/2.
1
4

∣∣ωF ∣∣2 =
∣∣Tθ+ηN ∣∣2 =

∑
T 2

(θ+ηN )(ei)
.

1
4
ωF,2 = T 2

θ+ηN .

ωF,2 (U, V ) =
[
ωF (U) , ωF (V )

]
.
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4
ωFp,2 = p2T 2

θ+ηN/p,p
.
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The Toeplitz operators as p→ +∞

Results of Boutet de Monvel, Guillemin, Sjöstrand,
Berezin, Ma-Marinescu.

As p→ +∞, 1
4p2

∣∣ωFp
∣∣2 ' T|θ|2,p +O (1/p). . .

. . . and 1
4p
ωFp,2 = Tθ∗2,p +O (1/p).

θ∗2 Poisson bracket θ∗2 (U, V ) = {θ (U) , θ (V )}.
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Berezin, Ma-Marinescu.

As p→ +∞, 1
4p2

∣∣ωFp
∣∣2 ' T|θ|2,p +O (1/p). . .

. . . and 1
4p
ωFp,2 = Tθ∗2,p +O (1/p).

θ∗2 Poisson bracket θ∗2 (U, V ) = {θ (U) , θ (V )}.

Jean-Michel Bismut Toeplitz operators and asymptotic torsion 18 / 40



Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators
The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula

The hypoelliptic Laplacian and the wave equation
References

The Toeplitz operators as p→ +∞

Results of Boutet de Monvel, Guillemin, Sjöstrand,
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Back to the spectral gap

�X
p = −∆X,u

p + 1
4

∣∣ωFp
∣∣2 + 1

2
eiiej

[
ωFp (ei) , ω

Fp (ej)
]
. . ..

As p→ +∞, the leading term is p2T|θ|2,p.

Compare with T 2 |∇f |2.

gL nondegenerate if |θ|2 > 0.

Lowest eigenvalue λ ≥ Cp2 − C ′.
For p ∈ N large enough, H · (X,Fp) = 0.
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The behaviour of analytic torsion as p→ +∞

Assume gL is nondegenerate.
1
p2
�X
p = − 1

p2
∆X,u
p + 1

4p2

∣∣ωFp
∣∣2 + . . .

As p→ +∞, the analysis of∫ +∞
0

Trs

[
NΛ·(T ∗X) exp

(
−t�X/p2

)]
dt
t

becomes local on
X (local index theory). . .

. . . and local on fibre N (Toeplitz operators).

As p→ +∞, Tr [TH,p] = (2π)−n
∫
N
HdvNpn +O (pn−1).

In the end, the fibre wins.
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The W -invariant

Assume X of odd dimension and θ nondegenerate.
ψ solid angle form on TX.
W =

∫
N θσ

∗
θ̂
ψ exp

(
c1

(
L, gL

))︸ ︷︷ ︸
depend on gTX ,gL

.

W obtained by integrating a local quantity.
W does not depend on the metrics on gTX , gL.

Theorem

(B., Ma, Zhang) As p→ +∞, if n = dimN ,

p−n−1Tan,p = W +O (1/p) .
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Applications

As shown by Bergeron and Venkatesh. . .
. . . using the Cheeger-Müller theorem, the asymptotics
of Tan,p gives information on the order of H ·tor (X,Fp).
Nondegeneracy of gL cannot be seen combinatorially.
Asymptotic combinatorial complex may have small
and large eigenvalues.
Nondegeneracy condition can be checked easily on
locally symmetric spaces (B-Ma-Zhang, Müller-Pfaff).
Formula for W related to B-Zhang formula

Tcomb − Tan =

∫
X

1

2
Tr
[
ωF
]

(∇f)∗ ψ.
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The total space of the tangent bundle

X compact Riemannian, X total space of TX.

H = 1
2

(
−∆V + |Y |2 − n

)
fibrewise harmonic oscillator.

kerH = exp
(
− |Y |2 /2

)
⊗ C∞ (X,R) ' C∞ (X,R).

P (fibrewise) orthogonal projection on kerH.
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The elliptic Laplacian as a Toeplitz operator

Z '
∑
Y i ∂

∂xi
geodesic flow.

Then PZP = 0.

Also PZ2P = 1
2
∆X .

More precisely, PZH−1ZP = 1
2
∆X .
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The scalar hypoelliptic Laplacian

Lb = H
b2
− Z

b
.

Lb hypoelliptic, not classically self-adjoint.

Lb self-adjoint with respect to
B((f, g) =

∫
X f (x, Y ) g (x,−Y ) dxdY (replace U (∞)

by U (∞,∞)).

Matrix structure of LXb with respect to splitting
L2 = kerH ⊕ kerH⊥

LXb '
[

0 −Z/b
−Z/b H/b2

]
.

Let us pretend LXb finite dimensional matrix.
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As b→ 0, LXb collapses to −1
2∆X

Asymptotics of resolvent
(
λ− LXb

)−1
as b→ 0 by

Gauss method.

As b→ 0, if P orthogonal projector on kerH

(
λ− LXb

)−1 '
[
(λ+ PZH−1ZP )

−1
0

0 0

]
.

We saw before that PZH−1ZP = 1
2
∆X .(

λ− LXb
)−1 → P

(
λ+ 1

2
∆X
)−1

P by collapsing of X on
X.
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The limit b→ +∞

As b→ +∞, Lb ' 1
2
|Y |2 − Z.

Heat propagates more along geodesic flow.
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The hypoelliptic analytic torsion

There is a canonical deformation of �X/2 to a hypoelliptic
Hodge Laplacian LXb .

Theorem

(B, Lebeau) For b > 0, Tan = Tan,b.
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The case of S1

If X = S1, SpLb = {2k2π2}k∈Z + N
b2

.

The spectrum of −∆S1
/2 remains rigidly embedded in

the spectrum of Lb.

Poisson formula for the heat kernel can be proved
using the hypoelliptic interpolation.
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Hypoelliptic Laplacian on locally symmetric

spaces

Assume X to be compact and locally symmetric
(constant curvature).

There is a version of the hypoelliptic Laplacian LXb
which has the same properties as Lb on S1.

The spectrum of −1
2

(
∆X + c

)
remains rigidly

embedded in the spectrum of LXb .

If X Riemann surface, LXb acts on a manifold of
dimension 5

= 2 + 3.
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A formula for LXb

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)
+
NΛ·(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX+ĉ

(
ad
(
Y TX

))
−c
(
ad
(
Y TX

)
+ iθad

(
Y N
)))

.

LXb is a deformation of −1
2

(
∆X + c

)
.

Jean-Michel Bismut Toeplitz operators and asymptotic torsion 31 / 40



Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators
The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula

The hypoelliptic Laplacian and the wave equation
References

A formula for LXb

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)
+
NΛ·(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX+ĉ
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(
ad
(
Y TX

))
−c
(
ad
(
Y TX

)
+ iθad

(
Y N
)))

.

LXb is a deformation of −1
2

(
∆X + c

)
.

Jean-Michel Bismut Toeplitz operators and asymptotic torsion 31 / 40



Analytic torsion and combinatorial torsion
Spectral gap and Toeplitz operators
The asymptotics of analytic torsion

The hypoelliptic Laplacian
Hypoelliptic Laplacian and the trace formula

The hypoelliptic Laplacian and the wave equation
References

A formula for LXb

LXb =
1

2

∣∣[Y N , Y TX
]∣∣2+

1

2b2

(
−∆TX⊕N + |Y |2 − n

)
+
NΛ·(T ∗X⊕N∗)

b2

+
1

b

(
∇Y TX+ĉ
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The preservation of the trace

Theorem

B. For any t > 0, b > 0

Tr
[
exp

(
t(∆X + c

)
/2
]

= Trs

[
exp

(
−tLXb

)]
.
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The limit as b→ +∞

Preservation of the orbital integrals.

As b→ +∞, concentration on closed geodesics.
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Semisimple orbital integrals

Tr[γ]
[
exp

(
t
(
∆X + c

)
/2
)]

=
exp

(
− |a|2 /2t

)
(2πt)p/2∫

k(γ)

Jγ
(
Y k

0

)
TrE

[
ρE
(
k−1
)

exp
(
−iρE

(
Y k

0

))]
exp

(
−
∣∣Y k

0

∣∣2 /2t) dY k
0

(2πt)q/2
.

• Like fixed point formulas by Atiyah-Bott

L (g) =

∫
Xg

Âg (TX) chg (E) .
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The function Jγ (Y0) , Y k
0 ∈ k (γ)

Jγ
(
Y k

0

)
=

1∣∣∣det (1− Ad (γ)) |z⊥0
∣∣∣1/2

Â
(
iad
(
Y k

0

)
|p(γ)

)
Â
(
iad
(
Y k

0

)
k(γ)

)
[

1

det (1− Ad (k−1)) |z⊥0 (γ)

det
(
1− exp

(
−iad

(
Y k

0

))
Ad (k−1)

)
|k⊥0 (γ)

det
(
1− exp

(
−iad

(
Y k

0

))
Ad (k−1)

)
|p⊥0 (γ)

]1/2

.
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The geodesic flow

Z geodesic flow.

In local geodesic coordinates, Z =
∑
Y i ∂

∂xi
.

σ (Z) =
√
−1 〈Y, ξ〉. . .

. . . which is also the symbol of Fourier transform.

Hypoelliptic Laplacian gives dynamic interpretation of
Fourier transform.
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Finite propagation speed

Heat flow exp
(
t∆X/2

)
has infinite propagation speed.

Geodesic flow has finite propagation speed.

How does the hypoelliptic heat flow propagate ?
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The projection of the hypoelliptic heat flow

LXb = H
b2
− Z

b
.

For t > 0, qb,t smooth kernel for exp
(
−tLXb

)
.

By B, Lebeau, as b→ 0, qb,t ((x, Y ) , (x′, Y ′))→
π−n/2pt (x, x′) exp

(
−1

2

(
|Y |2 + |Y ′|2

))
.

rb,t ((x, Y ) , x′) =
∫
TX

qb,t ((x, Y ) , (x′, Y ′)) dY ′.

As b→ 0, in x′, rb,t approximates solution of
hyperbolic wave equation with propagation speed 1/b.

The heat flow exp
(
−tLXb

)
projects to an “intelligent”

wave programmed to look for closed geodesics as
b→ +∞.
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