Quantum speed limit and displacement energy

Laurent Charles,
joint work with Leonid Polterovich

June 21, 2016
1. Quantum speed limit
2. Displacement energy
3. Relationship in the semiclassical limit
Quantum speed limit

Consider a finite dimensional Hilbert space \mathcal{H}, a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in C^\infty([0, 1], \text{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar \Psi'_t = \hat{H}_t \Psi_t$$

with initial condition $\Psi_0 = \Psi$.\n
Proposition (Quantum speed limit)

If (\hat{H}_t) a-dislocates Ψ, then $
\ell_q(\hat{H}) \geq \hbar \arccos(a)$.\n
Quantum speed limit

Consider a finite dimensional Hilbert space \mathcal{H}, a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $\left(\hat{H}_t \right) \in C^\infty([0, 1], \text{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar \psi'_t = \hat{H}_t \psi_t$$

with initial condition $\psi_0 = \Psi$.

We say that $\left(\hat{H}_t \right)$ \textit{a-dislocates} the state Ψ if $|\langle \psi_0, \psi_1 \rangle| \leq a$.

Proposition (Quantum speed limit)

If $\left(\hat{H}_t \right)$ \textit{a-dislocates} Ψ, then $\| \hat{H}_t \|_{\text{op}} \geq \frac{\hbar}{a} \arccos(a)$.

Quantum speed limit

Consider a finite dimensional Hilbert space \(\mathcal{H} \), a normalised state \(\Psi \in \mathcal{H} \) and a quantum Hamiltonian \((\hat{H}_t) \in C^\infty([0, 1], \text{Herm}(\mathcal{H})) \). Solve Schrödinger equation

\[
i \hbar \psi'_t = \hat{H}_t \psi_t
\]

with initial condition \(\psi_0 = \psi \).

We say that \((\hat{H}_t) \) \textit{a-dislocates} the state \(\psi \) if \(|\langle \psi_0, \psi_1 \rangle| \leq a \).

Define the energy of \((\hat{H}_t) \)

\[
\ell_q(\hat{H}_t) = \int_0^1 \| \hat{H}_t \|_{\text{op}} \, dt
\]
Quantum speed limit

Consider a finite dimensional Hilbert space \mathcal{H}, a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in C^\infty([0, 1], \text{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar \psi'_t = \hat{H}_t \psi_t$$

with initial condition $\psi_0 = \psi$.

We say that (\hat{H}_t) a-dislocates the state Ψ if $|\langle \psi_0, \psi_1 \rangle| \leq a$.

Define the energy of (\hat{H}_t)

$$\ell_q(\hat{H}_t) = \int_0^1 \| \hat{H}_t \|_{\text{op}} \, dt$$

Proposition (Quantum speed limit)

If (\hat{H}_t) a-dislocates Ψ, then $\ell_q(\hat{H}) \geq \hbar \arccos(a)$.
Displacement energy

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in C^\infty(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Theorem
For any open set Ω of M, there exists $C > 0$ such that for any classical Hamiltonian (H_t) displacing Ω, $\ell_{cl}(H_t) \geq C$.

The largest C is called the displacement energy.

This is due to Hofer, Viterbo, Polterovich, McDuff-Lalonde.
Displacement energy

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in C^\infty(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{\text{cl}}(H_t) = \int_0^1 \|H_t\|_\infty \, dt$$

We say that (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Theorem: For any open set Ω of M, there exists $C > 0$ such that for any classical Hamiltonian (H_t) displacing Ω, $\ell_{\text{cl}}(H_t) \geq C$.

The largest C is called the displacement energy. This is due to Hofer, Viterbo, Polterovich, McDuff-Lalonde.
Displacement energy

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in C^\infty(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{\text{cl}}(H_t) = \int_0^1 \|H_t\|_\infty \, dt$$

We say that (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.
Displacement energy

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in C^\infty(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{cl}(H_t) = \int_0^1 \|H_t\|_\infty \, dt$$

We say that (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Theorem

*For any open set Ω of M, there exists $C > 0$ such that for any classical Hamiltonian (H_t) displacing Ω, $\ell_{cl}(H_t) \geq C$.***

The largest C is called the displacement energy.
This is due to Hofer, Viterbo, Polterovich, McDuff-Lalonde.
Dislocation

(\hat{H}_t) a-dislocates the state ψ if $|\langle \psi_0, \psi_1 \rangle| \leq a$.

Proposition

If (\hat{H}_t) a-dislocates ψ, then $\ell_q(\hat{H}) \geq \hbar \arccos(a)$.

Displacement

(H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Theorem

For any open set Ω of M, there exists $C > 0$ such that for any classical Hamiltonian (H_t) displacing Ω, $\ell_{cl}(H_t) \geq C$.

Assume that \((H\hbar, \hbar \in \Lambda)\) is a quantization of \(M\) and \(\text{Op}_\hbar : \mathcal{C}^\infty(M) \to \text{End} \mathcal{H}_\hbar, \quad \hbar \in \Lambda\) a convenient map quantizing observables.

Proposition

If \((H_t)\) displaces the microsupport of \(\Psi\), then \(\hat{H}_t = \text{Op}_\hbar (H_t)\)-dislocate \(\Psi\).
Microsupport displacement implies dislocation

Assume that \((\mathcal{H}_\hbar, \hbar \in \Lambda)\) is a quantization of \(M\) and

\[
\text{Op}_\hbar : C^\infty(M) \rightarrow \text{End} \mathcal{H}_\hbar, \quad \hbar \in \Lambda
\]

a convenient map quantizing observables.

Let \((\psi_\hbar \in \mathcal{H}_\hbar, \hbar \in \Lambda)\) be a normalised state. Define its microsupport by

\[
x \notin \text{MS}(\Psi) \iff \text{there exists } f \in C^\infty(M) \text{ such that } f(x) \neq 0 \text{ and } \text{Op}(f)\Psi = O(\hbar^\infty).
\]

Proposition

If \((H_t)\) displaces the microsupport of \(\Psi\), then \(\hat{H}_t = \text{Op}_\hbar(H_t)\) dislocates \(\Psi\).
Microsupport displacement implies dislocation

Assume that \((\mathcal{H}_\hbar, \hbar \in \Lambda)\) is a quantization of \(M\) and

\[
\text{Op}_\hbar : \mathcal{C}^\infty(M) \rightarrow \text{End} \mathcal{H}_\hbar, \quad \hbar \in \Lambda
\]

a convenient map quantizing observables. Let \((\Psi_\hbar \in \mathcal{H}_\hbar, \hbar \in \Lambda)\) be a normalised state. Define its microsupport by

\[
x \notin \text{MS}(\Psi) \iff \text{there exists } f \in \mathcal{C}^\infty(M) \text{ such that } f(x) \neq 0 \text{ and } \text{Op}(f)\Psi = \mathcal{O}(\hbar^\infty).
\]

Proposition

If \((H_t)\) displaces the microsupport of \(\Psi\), then \(\hat{H}_t = \text{Op}_\hbar(H_t)\) \(\mathcal{O}(\hbar^\infty)\)-dislocate \(\Psi\).
Questions

We have seen that microsupport displacement implies dislocation.

1. Is the converse true?
 a. for “classical” quantum states, yes.
 b. for Lagrangian states, no.
Questions

We have seen that microsupport displacement implies dislocation.

1. Is the converse true?
 a. for “classical” quantum states, yes.
 b. for Lagrangian states, no.

2. What about $\ell_q(\hat{H}_t)$?
 a. lower bound ~ 1
 b. same order as quantum speed limit
Semi-classical setting

Let M be a complex compact manifold and $L \to M$ be a positive Hermitian holomorphic line bundle.

Then $\text{curv}(L) = \frac{1}{i} \omega$ where $\omega \in \Omega^2(M)$ is symplectic.

Define the Hilbert space

$$\mathcal{H}_{\hbar} = H^0(M, \mathcal{O}(L^k)), \quad \text{with } \hbar = 1/k$$

and the scalar product $\langle \psi, \psi' \rangle = \int_M (\psi, \psi') \mu$ where μ is the Liouville measure.
Semi-classical setting

Let M be a complex compact manifold and $L \to M$ be a positive Hermitian holomorphic line bundle.

Then $\text{curv}(L) = \frac{1}{i} \omega$ where $\omega \in \Omega^2(M)$ is symplectic.

Define the Hilbert space

$$\mathcal{H}_\hbar = H^0(M, \mathcal{O}(L^k)), \quad \text{with } \hbar = 1/k$$

and the scalar product $\langle \Psi, \Psi' \rangle = \int_M (\Psi, \Psi') \mu$ where μ is the Liouville measure.

For any $f \in C^\infty(M)$, define the Toeplitz operator

$$T_\hbar (f) : \mathcal{H}_\hbar \to \mathcal{H}_\hbar, \quad T_\hbar (f) \Psi = \Pi_\hbar (f \Psi)$$

where Π_\hbar is the orthogonal projector from $C^\infty(M, L^k)$ onto \mathcal{H}_\hbar.
On the index of Toeplitz operators of several complex variables, (1978), Inventiones Mathematicae, 50.

with J. Sjöstrand, Sur la singularité des noyaux de Bergman et Szegö, (1975), Asterisque no 34-35.

“Classical” quantum state

Classical state τ: Borel probability measure of M.
Quantum mixed state: positive endomorphism of \mathcal{H}_\hbar with trace 1.
“Classical” quantum state

Classical state τ: Borel probability measure of M. Quantum mixed state: positive endomorphism of \mathcal{H}_\hbar with trace 1.

For any classical state τ, define the mixed state

$$Q_\hbar(\tau) = \int_M P_{x,\hbar} \, d\tau(x)$$

where $P_{x,\hbar}$ is the projector onto $\mathbb{C}e_{x,\hbar}$ and $e_{x,\hbar} \in \mathcal{H}_\hbar$ is the coherent state at x.
“Classical” quantum state

Classical state τ: Borel probability measure of M. Quantum mixed state: positive endomorphism of \mathcal{H}_\hbar with trace 1. For any classical state τ, define the mixed state

$$Q_\hbar(\tau) = \int_M P_{x,\hbar} \, d\tau(x)$$

where $P_{x,\hbar}$ is the projector onto $\mathbb{C}e_{x,\hbar}$ and $e_{x,\hbar} \in \mathcal{H}_\hbar$ is the coherent state at x.

We say that (\hat{H}_t) a-dislocates the mixed state θ if $F(U_t\theta U_t^*, \theta) \leq a$ where $U_t = \text{quantum propagator, } i\hbar U'_t = \hat{H}_t U_t$. $F = \text{fidelity, } F(\theta, \sigma) = \|\theta^{1/2}\sigma^{1/2}\|_{\text{tr}}$

Another interesting fidelity is $F'(\theta, \sigma) = \left(\frac{\langle \theta, \sigma \rangle_{\text{HS}}}{\|\theta\|_{\text{HS}}\|\sigma\|_{\text{HS}}}\right)^{1/2}$.
Displacement vs dislocation for “classical” quantum state

Theorem (C-Polterovich)

Let τ be a classical state, (H_t) a classical Hamiltonian and $\hat{H}_t = T_\hbar(H_t)$.

1. if (H_t) displaces the support of τ, then $(\hat{H}_t) \mathcal{O}(\hbar^\infty)$-dislocates $Q_\hbar(\tau)$.
Theorem (C-Polterovich)

Let \(\tau \) be a classical state, \((H_t)\) a classical Hamiltonian and \(\hat{H}_t = T_\hbar(H_t) \).

1. if \((H_t)\) displaces the support of \(\tau \), then \((\hat{H}_t) \mathcal{O}(\hbar^{\infty})\)-dislocates \(Q_\hbar(\tau)\).

2. If \(\tau = f \mu \) with \(f \) of class \(\mathcal{C}^3 \) and \((\hat{H}_t) \circ(\hbar^n)\)-dislocate \(Q_\hbar(\tau)\), then for any \(\lambda > 0 \),

 \((H_t) \) displaces \(\{f > \lambda\} \) when \(\hbar \) is sufficiently small

 \(\ell_q(H) \geq C + \mathcal{O}(\hbar) \) with \(C \) the displacement energy of \(\{f > \lambda\} \).
Theorem (C-Polterovich)

Let τ be a classical state of class C^3 such that

$$\mu(\text{Supp } \tau) < \mu(M)/2.$$

Then for any $\epsilon > 0$, there exists a classical Hamiltonian (H_t) such that

$\quad \ell_{\text{cl}}(H_t) \leq \epsilon,$

$\quad \mu(\phi_1(\text{Supp } \tau) \cap \text{Supp } \tau) \leq \epsilon$ where ϕ_1 is the time-one-map of the Hamiltonian flow of (H_t),
Flexibility in displacement/dislocation

Theorem (C-Polterovich)

Let τ be a classical state of class C^3 such that

$$\mu(\text{Supp } \tau) < \mu(M)/2.$$

Then for any $\epsilon > 0$, there exists a classical Hamiltonian (H_t) such that

- $\ell_{\text{cl}}(H_t) \leq \epsilon$,
- $\mu(\phi_1(\text{Supp } \tau) \cap \text{Supp } \tau) \leq \epsilon$ where ϕ_1 is the time-one-map of the Hamiltonian flow of (H_t),
- the corresponding quantum Hamiltonian (\hat{H}_t) ϵ-dislocates $Q_{\hbar}(\tau)$ when \hbar is sufficiently small and $\ell_q(\hat{H}) \leq \epsilon$.

Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (ψ_\hbar) supported by Γ satisfies

1. $\psi_\hbar(x) = \mathcal{O}(\hbar^\infty)$ if $x \notin \Gamma$.
2. $\psi_\hbar(x) = \hbar^{-n/2} u^k(x) (a_0(x) + \hbar a_1(x) + \ldots)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$’s are complex numbers.
Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (Ψ_\hbar) supported by Γ satisfies

1. $\Psi_\hbar(x) = \mathcal{O}(\hbar^\infty)$ if $x \notin \Gamma$.

2. $\Psi_\hbar(x) = \hbar^{-n/2} u^k(x)(a_0(x) + \hbar a_1(x) + \ldots)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$’s are complex numbers.

Let $\hat{H}_\hbar = \hbar T_\hbar(f(\cdot, \hbar))$ with $f(\cdot, \hbar) = f_0 + \hbar f_1 + \ldots$. Then

- $\ell_q(\hat{H}_\hbar) = \|\hat{H}_\hbar\|_{op} = \mathcal{O}(\hbar)$ and $\exp(i\hbar^{-1} \hat{H}_\hbar) = T_\hbar(e^{if_0}) + \mathcal{O}(\hbar)$.

- $\exp(i\hbar^{-1} \hat{H}_\hbar) \Psi_\hbar$ is still a Lagrangian state supported by Γ.

Theorem (C-Polterovich)

Assume that $\Gamma = S^1 \times N$ and for any $x \in \Gamma$, $a_0(x) \neq 0$. Then we can choose the coefficients f_ℓ’s so that \hat{H}_\hbar-dislocates Ψ_\hbar.

Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (Ψ_\hbar) supported by Γ satisfies

1. $\Psi_\hbar(x) = O(\hbar^{\infty})$ if $x \notin \Gamma$.
2. $\Psi_\hbar(x) = \hbar^{-n/2} u^k(x)(a_0(x) + \hbar a_1(x) + \ldots)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$’s are complex numbers.

Let $\hat{H}_\hbar = \hbar T_\hbar(f(\cdot, \hbar))$ with $f(\cdot, \hbar) = f_0 + \hbar f_1 + \ldots$. Then

- $\ell_q(\hat{H}_\hbar) = \|\hat{H}_\hbar\|_{\text{op}} = O(\hbar)$ and $\exp(i\hbar^{-1}\hat{H}_\hbar) = T_\hbar(e^{i\tilde{f}_0}) + O(\hbar)$.
- $\exp(i\hbar^{-1}\hat{H}_\hbar)\Psi_\hbar$ is still a Lagrangian state supported by Γ.

Theorem (C-Polterovich)

Assume that $\Gamma = S^1 \times N$ and for any $x \in \Gamma$, $a_0(x) \neq 0$. Then we can choose the coefficients f_ℓ’s so that $\hat{H}_\hbar O(\hbar^{\infty})$-dislocates Ψ_\hbar.