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Quantum speed limit

Consider a finite dimensional Hilbert space H, a normalised state
Ψ ∈ H and a quantum Hamiltonian (Ĥt) ∈ C∞([0, 1],Herm(H)).
Solve Schrödinger equation

i~Ψ′t = ĤtΨt

with initial condition Ψ0 = Ψ.

We say that (Ĥt) a-dislocates the state Ψ if
∣∣〈Ψ0,Ψ1〉

∣∣ 6 a.

Define the energy of (Ĥt)

`q(Ĥt) =

∫ 1

0
‖Ĥt‖op dt

Proposition (Quantum speed limit)

If (Ĥt) a-dislocates Ψ, then `q(Ĥ) > ~ arccos(a).
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Displacement energy

Consider a symplectic manifold M and a classical Hamiltonian
(Ht) ∈ C∞(M). Let Xt be the corresponding vector field,
ω(Xt , ·) = dHt and (φt) be its flow.

Define the energy of (Ht)

`cl(Ht) =

∫ 1

0
‖Ht‖∞ dt

We say that (Ht) displaces a subset S of M if φ1(S) ∩ S = ∅.

Theorem
For any open set Ω of M, there exists C > 0 such that for any
classical Hamiltonian (Ht) displacing Ω, `cl(Ht) > C .

The largest C is called the displacement energy.
This is due to Hofer, Viterbo, Polterovich, McDuff-Lalonde.
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Dislocation

(Ĥt) a-dislocates the state Ψ if
∣∣〈Ψ0,Ψ1〉

∣∣ 6 a.

Proposition

If (Ĥt) a-dislocates Ψ, then `q(Ĥ) > ~ arccos(a).

Displacement

(Ht) displaces a subset S of M if φ1(S) ∩ S = ∅.

Theorem
For any open set Ω of M, there exists C > 0 such that for any
classical Hamiltonian (Ht) displacing Ω, `cl(Ht) > C .



Microsupport displacement implies dislocation

Assume that (H~, ~ ∈ Λ) is a quantization of M and

Op~ : C∞(M)→ EndH~, ~ ∈ Λ

a convenient map quantizing observables.

Let (Ψ~ ∈ H~, ~ ∈ Λ) be a normalised state. Define its
microsupport by

x /∈ MS(Ψ)⇔ there exists f ∈ C∞(M) such that

f (x) 6= 0 and Op(f )Ψ = O(~∞).

Proposition

If (Ht) displaces the microsupport of Ψ, then Ĥt = Op~(Ht)
O(~∞)-dislocate Ψ.
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Questions

We have seen that microsupport displacement implies dislocation.

1. Is the converse true ?

a. for “classical” quantum states, yes.
b. for Lagrangian states, no.

2. What about `q(Ĥt) ?

a. lower bound ∼ 1
b. same order as quantum speed limit
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Semi-classical setting

Let M be a complex compact manifold and L→ M be a positive
Hermitian holomorphic line bundle.

Then curv(L) = 1
i ω where ω ∈ Ω2(M) is symplectic.

Define the Hilbert space

H~ = H0(M,O(Lk)), with ~ = 1/k

and the scalar product 〈Ψ,Ψ′〉 =
∫
M(Ψ,Ψ′)µ where µ is the

Liouville measure.

For any f ∈ C∞(M), define the Toeplitz operator

T~(f ) : H~ → H~, T~(f )Ψ = Π~(f Ψ)

where Π~ is the orthogonal projector from C∞(M, Lk) onto H~.
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“Classical” quantum state

Classical state τ : Borel probability measure of M.
Quantum mixed state: positive endomorphism of H~ with trace 1.

For any classical state τ , define the mixed state

Q~(τ) =

∫
M

Px ,~ dτ(x)

where Px ,~ is the projector onto Cex ,~ and ex ,~ ∈ H~ is the
coherent state at x .

We say that (Ĥt) a-dislocates the mixed state θ if
F (UtθU∗t , θ) 6 a where

I Ut = quantum propagator, i~U ′t = ĤtUt .

I F = fidelity, F (θ, σ) = ‖θ1/2σ1/2‖tr

Another interesting fidelity is F ′(θ, σ) =
(
〈θ,σ〉HS
‖θ‖HS‖σ‖HS

)1/2
.
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Displacement vs dislocation for “classical” quantum state

Theorem (C-Polterovich)

Let τ be a classical state, (Ht) a classical Hamiltonian and
Ĥt = T~(Ht).

1. if (Ht) displaces the support of τ , then (Ĥt) O(~∞)-dislocates
Q~(τ).

2. If τ = f µ with f of class C3 and (Ĥt) o(~n)-dislocate Q~(τ),
then for any λ > 0,

I (Ht) displaces {f > λ} when ~ is sufficiently small
I `q(Ĥ) > C +O(~) with C the displacement energy of {f > λ}.
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I `q(Ĥ) > C +O(~) with C the displacement energy of {f > λ}.



Flexibility in displacement/dislocation

Theorem (C-Polterovich)

Let τ be a classical state of class C3 such that

µ(Supp τ) < µ(M)/2.

Then for any ε > 0, there exists a classical Hamiltonian (Ht) such
that

I `cl(Ht) 6 ε,

I µ(φ1(Supp τ) ∩ Supp τ) 6 ε where φ1 is the time-one-map of
the Hamiltonian flow of (Ht),

I the corresponding quantum Hamiltonian (Ĥt) ε-dislocates
Q~(τ) when ~ is sufficiently small and `q(Ĥ) 6 ε.
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Dislocation of Lagrangian state

Let Γ ⊂ M be a Lagrangian submanifold.

A Lagrangian state (Ψ~) supported by Γ satisfies

1. Ψ~(x) = O(~∞) if x /∈ Γ.

2. Ψ~(x) = ~−n/2uk(x)(a0(x) + ~a1(x) + . . .) where u(x) ∈ Lx

has norm 1 and the a`(x)’s are complex numbers.

Let Ĥ~ = ~T~(f (·, ~)) with f (·, ~) = f0 + ~f1 + . . .. Then

I `q(Ĥ~) = ‖Ĥ~‖op = O(~) and exp(i~−1Ĥ~) = T~(e if0) +O(~).

I exp(i~−1Ĥ~)Ψ~ is still a Lagrangian state supported by Γ.

Theorem (C-Polterovich)

Assume that Γ = S1 × N and for any x ∈ Γ, a0(x) 6= 0. Then we
can choose the coefficients f`’s so that Ĥ~ O(~∞)-dislocates Ψ~.
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Dislocation of Lagrangian state

Let Γ ⊂ M be a Lagrangian submanifold.

A Lagrangian state (Ψ~) supported by Γ satisfies

1. Ψ~(x) = O(~∞) if x /∈ Γ.

2. Ψ~(x) = ~−n/2uk(x)(a0(x) + ~a1(x) + . . .) where u(x) ∈ Lx

has norm 1 and the a`(x)’s are complex numbers.
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I exp(i~−1Ĥ~)Ψ~ is still a Lagrangian state supported by Γ.

Theorem (C-Polterovich)

Assume that Γ = S1 × N and for any x ∈ Γ, a0(x) 6= 0. Then we
can choose the coefficients f`’s so that Ĥ~ O(~∞)-dislocates Ψ~.


