Quantum speed limit and displacement energy

Laurent Charles, joint work with Leonid Polterovich

June 21, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- 1. Quantum speed limit
- 2. Displacement energy
- 3. Relationship in the semiclassical limit

(ロ)、(型)、(E)、(E)、 E) の(の)

Consider a finite dimensional Hilbert space \mathcal{H} , a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in \mathcal{C}^{\infty}([0, 1], \operatorname{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar\Psi_t'=\hat{H}_t\Psi_t$$

with initial condition $\Psi_0 = \Psi$.

Consider a finite dimensional Hilbert space \mathcal{H} , a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in \mathcal{C}^{\infty}([0, 1], \operatorname{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar\Psi_t'=\hat{H}_t\Psi_t$$

with initial condition $\Psi_0 = \Psi$. We say that (\hat{H}_t) *a-dislocates* the state Ψ if $|\langle \Psi_0, \Psi_1 \rangle| \leqslant a$.

Consider a finite dimensional Hilbert space \mathcal{H} , a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in \mathcal{C}^{\infty}([0, 1], \text{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar\Psi_t'=\hat{H}_t\Psi_t$$

with initial condition $\Psi_0 = \Psi$. We say that (\hat{H}_t) *a-dislocates* the state Ψ if $|\langle \Psi_0, \Psi_1 \rangle| \leq a$. Define the energy of (\hat{H}_t)

$$\ell_{\mathsf{q}}(\hat{H}_t) = \int_0^1 \|\hat{H}_t\|_{\mathsf{op}} dt$$

Consider a finite dimensional Hilbert space \mathcal{H} , a normalised state $\Psi \in \mathcal{H}$ and a quantum Hamiltonian $(\hat{H}_t) \in \mathcal{C}^{\infty}([0, 1], \operatorname{Herm}(\mathcal{H}))$. Solve Schrödinger equation

$$i\hbar\Psi_t'=\hat{H}_t\Psi_t$$

with initial condition $\Psi_0 = \Psi$. We say that (\hat{H}_t) *a-dislocates* the state Ψ if $|\langle \Psi_0, \Psi_1 \rangle| \leq a$. Define the energy of (\hat{H}_t)

$$\ell_{\mathsf{q}}(\hat{H}_t) = \int_0^1 \|\hat{H}_t\|_{\mathsf{op}} dt$$

Proposition (Quantum speed limit) If (\hat{H}_t) a-dislocates Ψ , then $\ell_q(\hat{H}) \ge \hbar \arccos(a)$.

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in \mathcal{C}^{\infty}(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in \mathcal{C}^{\infty}(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{\mathsf{cl}}(H_t) = \int_0^1 \|H_t\|_\infty \ dt$$

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in \mathcal{C}^{\infty}(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{\mathsf{cl}}(H_t) = \int_0^1 \|H_t\|_\infty \ dt$$

We say that (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Consider a symplectic manifold M and a classical Hamiltonian $(H_t) \in \mathcal{C}^{\infty}(M)$. Let X_t be the corresponding vector field, $\omega(X_t, \cdot) = dH_t$ and (ϕ_t) be its flow.

Define the energy of (H_t)

$$\ell_{\mathsf{cl}}(H_t) = \int_0^1 \|H_t\|_\infty \ dt$$

We say that (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Theorem

For any open set Ω of M, there exists C > 0 such that for any classical Hamiltonian (H_t) displacing Ω , $\ell_{cl}(H_t) \ge C$.

The largest C is called the displacement energy. This is due to Hofer, Viterbo, Polterovich, McDuff-Lalonde. Dislocation (\hat{H}_t) a-dislocates the state Ψ if $|\langle \Psi_0, \Psi_1 \rangle| \leq a$. Proposition If (\hat{H}_t) a-dislocates Ψ , then $\ell_q(\hat{H}) \geq \hbar \arccos(a)$.

Displacement

 (H_t) displaces a subset S of M if $\phi_1(S) \cap S = \emptyset$.

Theorem

For any open set Ω of M, there exists C > 0 such that for any classical Hamiltonian (H_t) displacing Ω , $\ell_{cl}(H_t) \ge C$.

Microsupport displacement implies dislocation

Assume that $(\mathcal{H}_{\hbar}, \hbar \in \Lambda)$ is a quantization of M and

$$\operatorname{Op}_{\hbar} : \mathcal{C}^{\infty}(M) \to \operatorname{End} \mathcal{H}_{\hbar}, \qquad \hbar \in \Lambda$$

a convenient map quantizing observables.

Microsupport displacement implies dislocation

Assume that $(\mathcal{H}_{\hbar}, \hbar \in \Lambda)$ is a quantization of M and

$$\operatorname{Op}_{\hbar} : \mathcal{C}^{\infty}(M) \to \operatorname{End} \mathcal{H}_{\hbar}, \qquad \hbar \in \Lambda$$

a convenient map quantizing observables. Let $(\Psi_{\hbar} \in \mathcal{H}_{\hbar}, \hbar \in \Lambda)$ be a normalised state. Define its

microsupport by

$$x \notin \mathsf{MS}(\Psi) \Leftrightarrow \text{there exists } f \in \mathcal{C}^{\infty}(M) \text{ such that}$$

 $f(x) \neq 0 \text{ and } \mathsf{Op}(f)\Psi = \mathcal{O}(\hbar^{\infty}).$

Microsupport displacement implies dislocation

Assume that $(\mathcal{H}_{\hbar}, \hbar \in \Lambda)$ is a quantization of M and

$$\operatorname{Op}_{\hbar} : \mathcal{C}^{\infty}(M) \to \operatorname{End} \mathcal{H}_{\hbar}, \qquad \hbar \in \Lambda$$

a convenient map quantizing observables.

Let $(\Psi_{\hbar} \in \mathcal{H}_{\hbar}, \hbar \in \Lambda)$ be a normalised state. Define its microsupport by

$$x \notin \mathsf{MS}(\Psi) \Leftrightarrow ext{there exists } f \in \mathcal{C}^{\infty}(M) ext{ such that}$$

 $f(x) \neq 0 ext{ and } \mathsf{Op}(f)\Psi = \mathcal{O}(\hbar^{\infty}).$

Proposition

If (H_t) displaces the microsupport of Ψ , then $\hat{H}_t = Op_{\hbar}(H_t)$ $\mathcal{O}(\hbar^{\infty})$ -dislocate Ψ .

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Questions

We have seen that microsupport displacement implies dislocation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. Is the converse true ?
 - a. for "classical" quantum states, yes.
 - b. for Lagrangian states, no.

Questions

We have seen that microsupport displacement implies dislocation.

- 1. Is the converse true ?
 - a. for "classical" quantum states, yes.
 - b. for Lagrangian states, no.
- 2. What about $\ell_q(\hat{H}_t)$?
 - a. lower bound ~ 1
 - b. same order as quantum speed limit

Semi-classical setting

Let *M* be a complex compact manifold and $L \rightarrow M$ be a positive Hermitian holomorphic line bundle.

Then $\operatorname{curv}(L) = \frac{1}{i}\omega$ where $\omega \in \Omega^2(M)$ is symplectic.

Define the Hilbert space

$$\mathcal{H}_{\hbar} = H^0(M, \mathcal{O}(L^k)), \quad ext{ with } \hbar = 1/k$$

and the scalar product $\langle \Psi, \Psi' \rangle = \int_M (\Psi, \Psi') \mu$ where μ is the Liouville measure.

Semi-classical setting

Let *M* be a complex compact manifold and $L \rightarrow M$ be a positive Hermitian holomorphic line bundle.

Then
$$\operatorname{curv}(L) = \frac{1}{i}\omega$$
 where $\omega \in \Omega^2(M)$ is symplectic.

Define the Hilbert space

$$\mathcal{H}_{\hbar} = H^0(M, \mathcal{O}(L^k)), \quad ext{ with } \hbar = 1/k$$

and the scalar product $\langle \Psi, \Psi' \rangle = \int_{\mathcal{M}} (\Psi, \Psi') \mu$ where μ is the Liouville measure.

For any $f \in C^{\infty}(M)$, define the Toeplitz operator

$$T_{\hbar}(f):\mathcal{H}_{\hbar}
ightarrow\mathcal{H}_{\hbar}, \qquad T_{\hbar}(f)\Psi=\Pi_{\hbar}(f\Psi)$$

where Π_{\hbar} is the orthogonal projector from $\mathcal{C}^{\infty}(M, L^k)$ onto \mathcal{H}_{\hbar} .

On the index of Toeplitz operators of several complex variables, (1978), Inventiones Mathematicae, 50.

with J. Sjöstrand, *Sur la singularité des noyaux de Bergman et Szegö*, (1975), Asterisque no 34-35.

with V. Guillemin, *The spectral theory of Toeplitz operator*, (1981), Annals of Mathematics Studies, 99.

"Classical" quantum state

Classical state τ : Borel probability measure of M. Quantum mixed state: positive endomorphism of \mathcal{H}_{\hbar} with trace 1.

"Classical" quantum state

Classical state τ : Borel probability measure of M. Quantum mixed state: positive endomorphism of \mathcal{H}_{\hbar} with trace 1.

For any classical state τ , define the mixed state

$$Q_{\hbar}(au) = \int_{M} P_{x,\hbar} \; d au(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $P_{x,\hbar}$ is the projector onto $\mathbb{C}e_{x,\hbar}$ and $e_{x,\hbar} \in \mathcal{H}_{\hbar}$ is the coherent state at x.

"Classical" quantum state

Classical state τ : Borel probability measure of M. Quantum mixed state: positive endomorphism of \mathcal{H}_{\hbar} with trace 1.

For any classical state τ , define the mixed state

$$\mathcal{Q}_{\hbar}(au) = \int_{M} \mathcal{P}_{x,\hbar} \; d au(x)$$

where $P_{x,\hbar}$ is the projector onto $\mathbb{C}e_{x,\hbar}$ and $e_{x,\hbar} \in \mathcal{H}_{\hbar}$ is the coherent state at x.

We say that (\hat{H}_t) *a*-dislocates the mixed state θ if $F(U_t \theta U_t^*, \theta) \leq a$ where

• $U_t =$ quantum propagator, $i\hbar U'_t = \hat{H}_t U_t$.

•
$$F = \text{fidelity}, F(\theta, \sigma) = \|\theta^{1/2}\sigma^{1/2}\|_{\mathsf{tr}}$$

Another interesting fidelity is $F'(\theta, \sigma) = \left(\frac{\langle \theta, \sigma \rangle_{HS}}{\|\theta\|_{HS} \|\sigma\|_{HS}}\right)^{1/2}$.

Displacement vs dislocation for "classical" quantum state

Theorem (C-Polterovich)

Let τ be a classical state, (H_t) a classical Hamiltonian and $\hat{H}_t = T_{\hbar}(H_t)$.

1. if (H_t) displaces the support of τ , then $(\hat{H}_t) \mathcal{O}(\hbar^{\infty})$ -dislocates $Q_{\hbar}(\tau)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Displacement vs dislocation for "classical" quantum state

Theorem (C-Polterovich)

Let τ be a classical state, (H_t) a classical Hamiltonian and $\hat{H}_t = T_{\hbar}(H_t)$.

- 1. if (H_t) displaces the support of τ , then $(\hat{H}_t) \mathcal{O}(\hbar^{\infty})$ -dislocates $Q_{\hbar}(\tau)$.
- 2. If $\tau = f \mu$ with f of class C^3 and $(\hat{H}_t) o(\hbar^n)$ -dislocate $Q_{\hbar}(\tau)$, then for any $\lambda > 0$,
 - (H_t) displaces { $f > \lambda$ } when \hbar is sufficiently small
 - $\ell_q(\hat{H}) \ge C + \mathcal{O}(\hbar)$ with C the displacement energy of $\{f > \lambda\}$.

Flexibility in displacement/dislocation

Theorem (C-Polterovich)

Let τ be a classical state of class C^3 such that

 $\mu(\operatorname{Supp} \tau) < \mu(M)/2.$

Then for any $\epsilon > 0$, there exists a classical Hamiltonian (H_t) such that

- $\ell_{\mathsf{cl}}(H_t) \leqslant \epsilon$,
- μ(φ₁(Supp τ) ∩ Supp τ) ≤ ε where φ₁ is the time-one-map of the Hamiltonian flow of (H_t),

Flexibility in displacement/dislocation

Theorem (C-Polterovich)

Let τ be a classical state of class C^3 such that

 $\mu(\operatorname{Supp} \tau) < \mu(M)/2.$

Then for any $\epsilon > 0$, there exists a classical Hamiltonian (H_t) such that

- $\ell_{\mathsf{cl}}(H_t) \leqslant \epsilon$,
- μ(φ₁(Supp τ) ∩ Supp τ) ≤ ε where φ₁ is the time-one-map of the Hamiltonian flow of (H_t),

the corresponding quantum Hamiltonian (Ĥ_t) ε-dislocates Q_ħ(τ) when ħ is sufficiently small and ℓ_q(Ĥ) ≤ ε.

Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (Ψ_{\hbar}) supported by Γ satisfies

1.
$$\Psi_{\hbar}(x) = \mathcal{O}(\hbar^{\infty})$$
 if $x \notin \Gamma$.

2. $\Psi_{\hbar}(x) = \hbar^{-n/2} u^k(x) (a_0(x) + \hbar a_1(x) + ...)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$'s are complex numbers.

Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (Ψ_{\hbar}) supported by Γ satisfies

1.
$$\Psi_{\hbar}(x) = \mathcal{O}(\hbar^{\infty})$$
 if $x \notin \Gamma$.

2. $\Psi_{\hbar}(x) = \hbar^{-n/2} u^k(x) (a_0(x) + \hbar a_1(x) + ...)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$'s are complex numbers.

Let
$$\hat{H}_{\hbar} = \hbar T_{\hbar}(f(\cdot, \hbar))$$
 with $f(\cdot, \hbar) = f_0 + \hbar f_1 + \dots$ Then
 $\ell_q(\hat{H}_{\hbar}) = \|\hat{H}_{\hbar}\|_{op} = \mathcal{O}(\hbar)$ and $\exp(i\hbar^{-1}\hat{H}_{\hbar}) = T_{\hbar}(e^{if_0}) + \mathcal{O}(\hbar)$.
 $\epsilon \exp(i\hbar^{-1}\hat{H}_{\hbar})\Psi_{\hbar}$ is still a Lagrangian state supported by Γ .

Dislocation of Lagrangian state

Let $\Gamma \subset M$ be a Lagrangian submanifold.

A Lagrangian state (Ψ_{\hbar}) supported by Γ satisfies

1.
$$\Psi_{\hbar}(x) = \mathcal{O}(\hbar^{\infty})$$
 if $x \notin \Gamma$.

2. $\Psi_{\hbar}(x) = \hbar^{-n/2} u^k(x) (a_0(x) + \hbar a_1(x) + ...)$ where $u(x) \in L_x$ has norm 1 and the $a_\ell(x)$'s are complex numbers.

Let
$$\hat{H}_{\hbar} = \hbar T_{\hbar}(f(\cdot, \hbar))$$
 with $f(\cdot, \hbar) = f_0 + \hbar f_1 + \dots$ Then
 $\ell_q(\hat{H}_{\hbar}) = \|\hat{H}_{\hbar}\|_{op} = \mathcal{O}(\hbar)$ and $\exp(i\hbar^{-1}\hat{H}_{\hbar}) = T_{\hbar}(e^{if_0}) + \mathcal{O}(\hbar)$.
 $\epsilon \exp(i\hbar^{-1}\hat{H}_{\hbar})\Psi_{\hbar}$ is still a Lagrangian state supported by Γ .

Theorem (C-Polterovich)

Assume that $\Gamma = S^1 \times N$ and for any $x \in \Gamma$, $a_0(x) \neq 0$. Then we can choose the coefficients f_{ℓ} 's so that $\hat{H}_{\hbar} \mathcal{O}(\hbar^{\infty})$ -dislocates Ψ_{\hbar} .