Almost global solutions for the periodic gravity-capillarity equation

Jean-Marc Delort
Université Paris-Nord

(joint work with Massimiliano Berti)

1. The gravity-capillarity wave equations

Air

$$
\begin{aligned}
& \text { Water } \\
& \Delta \Phi=0
\end{aligned} \quad-1<y<\eta(t, x)=~ \$
$$

bottom $\partial_{n} \Phi=0$
For an incompressible and irrotational fluid, one may write the velocity as $v=\nabla \Phi$ with $\Delta \Phi=0$, and express the equation from $\psi=\left.\Phi\right|_{y=\eta(t, x)}$ and $\eta(t, x)$.

1. The gravity-capillarity wave equations

For an incompressible and irrotational fluid, one may write the velocity as $v=\nabla \Phi$ with $\Delta \Phi=0$, and express the equation from $\psi=\left.\Phi\right|_{y=\eta(t, x)}$ and $\eta(t, x)$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$
\partial_{t} \eta=G(\eta) \psi
$$

${ }^{(\mathrm{CGWE})} \partial_{t} \psi=-g \eta-\frac{1}{2}\left(\partial_{x} \psi\right)^{2}+\frac{\left[G(\eta) \psi+\partial_{x} \psi \partial_{x} \eta\right]^{2}}{2\left(1+\left(\partial_{x} \eta\right)^{2}\right)}+\kappa H(\eta)$
where $G(\eta) \psi$ is the Dirichlet-Neumann operator defined by $G(\eta) \psi=\left.\left(\partial_{y} \Phi-\partial_{x} \eta \partial_{x} \Phi\right)\right|_{y=\eta(t, x)}$ where $H(\eta)=\partial_{x}\left[\frac{\eta^{\prime}}{\sqrt{1+\eta^{\prime 2}}}\right]$, with $\eta^{\prime}=\partial_{x} \eta$, where $g>0, \kappa>0$, and $x \in \mathbb{T}^{1}$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$
\partial_{t} \eta=G(\eta) \psi
$$

${ }^{(\mathrm{CGWE})} \partial_{t} \psi=-g \eta-\frac{1}{2}\left(\partial_{x} \psi\right)^{2}+\frac{\left[G(\eta) \psi+\partial_{x} \psi \partial_{x} \eta\right]^{2}}{2\left(1+\left(\partial_{x} \eta\right)^{2}\right)}+\kappa H(\eta)$
where $G(\eta) \psi$ is the Dirichlet-Neumann operator defined by $G(\eta) \psi=\left.\left(\partial_{y} \Phi-\partial_{x} \eta \partial_{x} \Phi\right)\right|_{y=\eta(t, x)}$ where $H(\eta)=\partial_{x}\left[\frac{\eta^{\prime}}{\sqrt{1+\eta^{\prime 2}}}\right]$, with $\eta^{\prime}=\partial_{x} \eta$, where $g>0, \kappa>0$, and $x \in \mathbb{T}^{1}$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$
\partial_{t} \eta=G(\eta) \psi
$$

${ }^{(\mathrm{CGWE})} \partial_{t} \psi=-g \eta-\frac{1}{2}\left(\partial_{x} \psi\right)^{2}+\frac{\left[G(\eta) \psi+\partial_{x} \psi \partial_{x} \eta\right]^{2}}{2\left(1+\left(\partial_{x} \eta\right)^{2}\right)}+\kappa H(\eta)$
where $G(\eta) \psi$ is the Dirichlet-Neumann operator defined by $G(\eta) \psi=\left.\left(\partial_{y} \Phi-\partial_{x} \eta \partial_{x} \Phi\right)\right|_{y=\eta(t, x)}$ where $H(\eta)=\partial_{x}\left[\frac{\eta^{\prime}}{\sqrt{1+\eta^{\prime 2}}}\right]$, with $\eta^{\prime}=\partial_{x} \eta$, where $g>0, \kappa>0$, and $x \in \mathbb{T}^{1}$.

Known results:

- Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.

Known results:

- Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.
- Long time existence with small decaying data: Case $\kappa=0$: Sijue Wu, Germain-Masmoudi-Shatah, lonescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang .
Case $\kappa>0$: Deng-lonescu-Pausader-Pusateri, Germain-Masmoudi-Shatah, Ionescu-Pusateri.
- Long time existence for non localized data: Existence of solutions with data of size ϵ over an interval of time of
Ifrim-Tataru $(g=0$ or $\kappa=0$, periodic data).

Known results:

- Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.
- Long time existence with small decaying data:

Case $\kappa=0$: Sijue Wu, Germain-Masmoudi-Shatah, lonescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang .
Case $\kappa>0$: Deng-lonescu-Pausader-Pusateri, Germain-Masmoudi-Shatah, Ionescu-Pusateri.

- Long time existence for non localized data: Existence of solutions with data of size ϵ over an interval of time of length ϵ^{-2}. Ifrim-Tataru ($g=0$ or $\kappa=0$, periodic data).

Question: Can we do better?
Definition: Let $S=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. One says that a solution $\left[\begin{array}{l}\eta \\ \psi\end{array}\right]$ of
(CGWE) is reversible if and only for any $t\left[\begin{array}{l}\eta(-t) \\ \psi(-t)\end{array}\right]=S\left[\begin{array}{l}\eta(t) \\ \psi(t)\end{array}\right]$.
Note that this implies that $\psi(0)=0$.
Conversely, $\psi(0)=0$ implies that the solution is reversible, since if we write the equation $\left[\begin{array}{c}\dot{\eta} \\ \dot{\psi}\end{array}\right]=F\left[\begin{array}{c}\eta \\ \psi\end{array}\right]$, one has

$$
S F\left[\begin{array}{l}
\eta \\
\psi
\end{array}\right]=-F\left(S\left[\begin{array}{l}
\eta \\
\psi
\end{array}\right]\right) .
$$

Notation: $\bullet \eta \in H_{0, e \mathrm{ev}}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions with zero mean.

- $\psi \in \dot{H}_{\mathrm{ev}}^{s-\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions modulo constants.

Notation: • $\eta \in H_{0, \mathrm{ev}}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions with zero mean.

- $\psi \in \dot{H}_{\text {ev }}^{s-\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions modulo constants.

Theorem

There is a zero measure subset \mathcal{N} of $] 0,+\infty\left[{ }^{2}\right.$, and for any (g, κ) in $] 0,+\infty\left[{ }^{2}-\mathcal{N}\right.$, for any N in \mathbb{N}, there is $s_{0}>0$ and for any $s>s_{0}$, there are $c>0, \epsilon_{0}>0$ such that, for any $\epsilon<\epsilon_{0}$, any $\eta_{0} \in H_{0, \mathrm{ev}}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right)$, with norm smaller than ϵ, (CGWE) has a unique solution $(\eta, \psi) \in C^{0}(]-T_{\epsilon}, T_{\epsilon}\left[, H_{0, \text { ev }}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right) \times \dot{H}_{\mathrm{ev}}^{s-\frac{1}{4}}\left(\mathbb{T}^{1}\right)\right)$ with $T_{\epsilon} \geq c \epsilon^{-N}$, and Cauchy data $\left.(\eta, \psi)\right|_{t=0}=\left(\eta_{0}, 0\right)$.
(Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.

Notation: • $\eta \in H_{0, \text { ev }}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions with zero mean.

- $\psi \in \dot{H}_{\text {ev }}^{s-\frac{1}{4}}\left(\mathbb{T}^{1}\right)$ Sobolev space of even functions modulo constants.

Theorem

There is a zero measure subset \mathcal{N} of $] 0,+\infty\left[{ }^{2}\right.$, and for any (g, κ) in $] 0,+\infty\left[{ }^{2}-\mathcal{N}\right.$, for any N in \mathbb{N}, there is $s_{0}>0$ and for any $s>s_{0}$, there are $c>0, \epsilon_{0}>0$ such that, for any $\epsilon<\epsilon_{0}$, any $\eta_{0} \in H_{0, \mathrm{ev}}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right)$, with norm smaller than ϵ, (CGWE) has a unique solution $(\eta, \psi) \in C^{0}(]-T_{\epsilon}, T_{\epsilon}\left[, H_{0, \mathrm{ev}}^{s+\frac{1}{4}}\left(\mathbb{T}^{1}\right) \times \dot{H}_{\mathrm{ev}}^{s-\frac{1}{4}}\left(\mathbb{T}^{1}\right)\right)$ with $T_{\epsilon} \geq c \epsilon^{-N}$, and Cauchy data $\left.(\eta, \psi)\right|_{t=0}=\left(\eta_{0}, 0\right)$.
Reference: There exist special global solutions: time periodic (Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.

2. Principle of proof on a model

Let $m \in \mathbb{R}_{+}^{*}$ and $\Lambda_{m}=\sqrt{-\Delta+m^{2}}$ acting on $L^{2}\left(\mathbb{T}^{1}\right)$. Let u be a solution to

$$
\begin{aligned}
\left(D_{t}-\Lambda_{m}\right) u & =P(u, \bar{u}) \\
\left.u\right|_{t=0} & =\epsilon u_{0}, \quad u_{0} \in H^{s}\left(\mathbb{T}^{1}, \mathbb{C}\right) s \gg 1
\end{aligned}
$$

where P is a polynomial homogeneous of degree p. The Sobolev energy inequality is

$$
\frac{d}{d t}\|u(t, \cdot)\|_{H^{s}}^{2}=\frac{d}{d t}\left\langle\Lambda_{m}^{s} u, \Lambda_{m}^{s} u\right\rangle_{L^{2}}=2 \operatorname{Re} i\left\langle\Lambda_{m}^{s} P(u, \bar{u}), \Lambda_{m}^{s} u\right\rangle
$$

whence

$$
\|u(t, \cdot)\|_{H^{s}} \leq \underbrace{\|u(0, \cdot)\|_{H^{s}}}_{\sim \epsilon}+C \int_{0}^{t}\|u(\tau, \cdot)\|_{H^{s}}^{p} d \tau
$$

One gets an a priori bound on an interval of length at least $c \epsilon^{-p+1}$, which implies existence up to such a time. One can get a better result by a normal forms method.

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

$$
\left(D_{t}-\Lambda_{m}\right)[u+Q(u, \bar{u})]=(\text { terms of order } q>p)
$$

+ (terms of order p that do not contribute to the energy).
Then as $\|Q(u, \bar{u})\|_{H^{s}}=O\left(\|u\|_{H^{s}}^{2}\right)$, one gets a time of existence in $c \epsilon^{-q+1}$.

such that $\left(D_{t}-\Lambda_{m}\right) Q=-u^{\ell} \bar{u}^{p-\ell}+\mathrm{h}$. o. terms. Then

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

$$
\left(D_{t}-\Lambda_{m}\right)[u+Q(u, \bar{u})]=(\text { terms of order } q>p)
$$

+ (terms of order p that do not contribute to the energy).
Then as $\|Q(u, \bar{u})\|_{H^{s}}=O\left(\|u\|_{H^{s}}^{2}\right)$, one gets a time of existence in $c \epsilon^{-q+1}$.

Take $P(u, \bar{u})=u^{\ell} \bar{u}^{p-\ell}$ and look for $Q=M(\underbrace{u, \ldots, u}_{\ell}, \underbrace{\bar{u}, \ldots, \bar{u}}_{p-\ell})$
such that $\left(D_{t}-\Lambda_{m}\right) Q=-u^{\ell} \bar{u}^{p-\ell}+$ h. o. terms. Then

$$
\begin{aligned}
& \left(D_{t}-\Lambda_{m}\right) M(u, \ldots, u, \bar{u}, \ldots, \bar{u})=\sum_{1}^{\ell} M\left(u, \ldots, \Lambda_{m} u, \ldots, u, \bar{u}, \ldots, \bar{u}\right) \\
- & \sum_{\ell+1}^{p} M\left(u, \ldots, u, \bar{u}, \ldots, \Lambda_{m} \bar{u}, \ldots, \bar{u}\right)-\Lambda_{m} M(u, \ldots, \bar{u})+\text { h. o. terms. }
\end{aligned}
$$

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

$$
\left(D_{t}-\Lambda_{m}\right)[u+Q(u, \bar{u})]=(\text { terms of order } q>p)
$$

+ (terms of order p that do not contribute to the energy).
Then as $\|Q(u, \bar{u})\|_{H^{s}}=O\left(\|u\|_{H^{s}}^{2}\right)$, one gets a time of existence in $c \epsilon^{-q+1}$.

Take $P(u, \bar{u})=u^{\ell} \bar{u}^{p-\ell}$ and look for $Q=M(\underbrace{u, \ldots, u}_{\ell}, \underbrace{\bar{u}, \ldots, \bar{u}}_{p-\ell})$
such that $\left(D_{t}-\Lambda_{m}\right) Q=-u^{\ell} \bar{u}^{p-\ell}+$ h. o. terms. Then

$$
\begin{aligned}
& \left(D_{t}-\Lambda_{m}\right) M(u, \ldots, u, \bar{u}, \ldots, \bar{u})=\sum_{1}^{\ell} M\left(u, \ldots, \Lambda_{m} u, \ldots, u, \bar{u}, \ldots, \bar{u}\right) \\
- & \sum_{\ell+1}^{p} M\left(u, \ldots, u, \bar{u}, \ldots, \Lambda_{m} \bar{u}, \ldots, \bar{u}\right)-\Lambda_{m} M(u, \ldots, \bar{u})+\text { h. o. terms. }
\end{aligned}
$$

Denote by Π_{n} the spectral projector associated to the n-th mode of $-\Delta$ on \mathbb{T}^{1}. Replace the j-th argument u by $\Pi_{n_{j}} u_{j}$ and $\Lambda_{m} \Pi_{n_{j}} u_{j}$ by $\sqrt{m^{2}+n_{j}^{2}} \Pi_{n_{j}} u_{j}$, and make act on the equation $\Pi_{n_{p+1}}$.

One gets to solve

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right) \Pi_{n_{p+1}} M\left(\Pi_{n_{1}} u_{1}, \ldots, \Pi_{n_{p}} u_{p}\right)
$$

$$
=-\Pi_{n_{p+1}}\left(\prod_{1}^{p} \Pi_{n_{j}} u_{j}\right)
$$

where

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)=\sum_{1}^{\ell} \sqrt{m^{2}+n_{j}^{2}}-\sum_{\ell+1}^{p+1} \sqrt{m^{2}+n_{j}^{2}}
$$

One proves that if m is outside a subset of zero measure and $\sum_{1}^{p+1} \pm n_{j}=0$, then
$\left|\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)\right| \geq c\left(\text { third largest among } n_{1}, \ldots, n_{p+1}\right)^{-N_{0}}$
except in the trivial case

Using the structure of the equation, one may check that the corresponding terms do not contribute to the, energ.

One gets to solve

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right) \Pi_{n_{p+1}} M\left(\Pi_{n_{1}} u_{1}, \ldots, \Pi_{n_{p}} u_{p}\right)
$$

$$
=-\Pi_{n_{p+1}}\left(\prod_{1}^{p} \Pi_{n_{j}} u_{j}\right)
$$

where

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)=\sum_{1}^{\ell} \sqrt{m^{2}+n_{j}^{2}}-\sum_{\ell+1}^{p+1} \sqrt{m^{2}+n_{j}^{2}}
$$

One proves that if m is outside a subset of zero measure and $\sum_{1}^{p+1} \pm n_{j}=0$, then

$$
\left|\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)\right| \geq c\left(\text { third largest among } n_{1}, \ldots, n_{p+1}\right)^{-N_{0}}
$$

except in the trivial case

$$
p \text { odd, } \ell=\frac{p+1}{2},\left\{n_{1}, \ldots, n_{\ell}\right\}=\left\{n_{\ell+1}, \ldots, n_{p+1}\right\} .
$$

One gets to solve

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right) \Pi_{n_{p+1}} M\left(\Pi_{n_{1}} u_{1}, \ldots, \Pi_{n_{p}} u_{p}\right)
$$

$$
=-\Pi_{n_{p+1}}\left(\prod_{1}^{p} \Pi_{n_{j}} u_{j}\right)
$$

where

$$
\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)=\sum_{1}^{\ell} \sqrt{m^{2}+n_{j}^{2}}-\sum_{\ell+1}^{p+1} \sqrt{m^{2}+n_{j}^{2}}
$$

One proves that if m is outside a subset of zero measure and $\sum_{1}^{p+1} \pm n_{j}=0$, then

$$
\left|\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p+1}\right)\right| \geq c\left(\text { third largest among } n_{1}, \ldots, n_{p+1}\right)^{-N_{0}}
$$

except in the trivial case

$$
p \text { odd, } \ell=\frac{p+1}{2},\left\{n_{1}, \ldots, n_{\ell}\right\}=\left\{n_{\ell+1}, \ldots, n_{p+1}\right\} .
$$

Using the structure of the equation, one may check that the corresponding terms do not contribute to the energy.

3. Case of quasi-linear equations

Consider for instance $\left(D_{t}-\Lambda_{m}\right) u=|u|^{2} D_{x} u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $u v=T_{u} v+T_{v} u+R(u, v)$ where

$$
\widehat{T_{u} v}=\int_{|\xi-\eta|<|\eta|} \hat{u}(\xi-\eta) \hat{v}(\eta) d \eta
$$

so that $T_{u} v$ has the same smoothness as v, and $R(u, v)$ is smoother than u, v. Our model may be written

$$
\left(D_{t}-\left(\Lambda_{m}+T_{|u|^{2}} D_{x}\right)\right) u=T_{D_{x} u}|u|^{2}+R(u) .
$$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity involves analytic expressions in $\partial_{x} \eta, \partial_{x} \psi$ and in $G(\eta) \psi$. One thus needs to

3. Case of quasi-linear equations

Consider for instance $\left(D_{t}-\Lambda_{m}\right) u=|u|^{2} D_{x} u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $u v=T_{u} v+T_{v} u+R(u, v)$ where

$$
\widehat{T_{u} v}=\int_{|\xi-\eta|<|\eta|} \hat{u}(\xi-\eta) \hat{v}(\eta) d \eta
$$

so that $T_{u} v$ has the same smoothness as v, and $R(u, v)$ is smoother than u, v. Our model may be written

$$
\left(D_{t}-\mathrm{OP}^{\mathrm{BW}}\left(\sqrt{m^{2}+\xi^{2}}+|u|^{2} \xi\right)\right) u=\text { semi-linear }+ \text { smoothing terms. }
$$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity invoives analytic expressions in $\partial_{x} \eta, \partial_{x} \psi$ and in $G(\eta) \psi$. One thus needs to

3. Case of quasi-linear equations

Consider for instance $\left(D_{t}-\Lambda_{m}\right) u=|u|^{2} D_{x} u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $u v=T_{u} v+T_{v} u+R(u, v)$ where

$$
\widehat{T_{u} v}=\int_{|\xi-\eta|<|\eta|} \hat{u}(\xi-\eta) \hat{v}(\eta) d \eta
$$

so that $T_{u} v$ has the same smoothness as v, and $R(u, v)$ is smoother than u, v. Our model may be written

$$
\left(D_{t}-\mathrm{OB}^{\mathrm{BW}}\left(\sqrt{m^{2}+\xi^{2}}+|u|^{2} \xi\right)\right) u=\text { semi-linear }+ \text { smoothing terms. }
$$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity involves analytic expressions in $\partial_{x} \eta, \partial_{x} \psi$ and in $G(\eta) \psi$. One thus needs to express the Dirichlet-Neumann operator from such symbols.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \leq y \leq \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

where A is a matrix of symbols of para-differential operators (depending on $\eta, \psi), R(\eta, \psi)$ a smoothing operator, that gains derivatives, and $\mathrm{Op}^{\mathrm{BW}}(\cdot)$ stands for Bony-Weyl quantization.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \leq y \leq \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms of (η, ψ) and also an expansion of the remainders. Instead of using a variational approach, we construct a Boutet de Monvel paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as
where A is a matrix of symbols of para-differential operators (depending on $\eta, \psi), R(\eta, \psi)$ a smoothing operator, that gains p derivatives, and Op ${ }^{B W}(\cdot)$ stands for Bony-Weyl quantization.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \leq y \leq \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms of (η, ψ) and also an expansion of the remainders. Instead of using a variational approach, we construct a Boutet de Monvel paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as

$$
\left(D_{t}-\mathrm{Op}^{\mathrm{BW}}(A(\eta, \psi ; t, x, \xi))\right)\left[\begin{array}{l}
\eta \\
\psi
\end{array}\right]=R(\eta, \psi)\left[\begin{array}{l}
\eta \\
\psi
\end{array}\right]
$$

where A is a matrix of symbols of para-differential operators (depending on $\eta, \psi), R(\eta, \psi)$ a smoothing operator, that gains ρ derivatives, and $\mathrm{Op}^{\mathrm{BW}}(\cdot)$ stands for Bony-Weyl quantization.

4. Sketch of proof

1st step: Reductions (Alazard-Métivier, Alazard-Baldi, Berti-Montalto)

One may rewrite the equation in terms of a new unknown, and perform series of reductions that bring to a new equation, in terms of a complex new unknown $U=\left[\frac{u}{u}\right]$, and an auxiliary \mathbb{C}^{2} valued function V, expressed from U, such that $\|U\|_{\dot{H}^{s}} \sim\|V\|_{\dot{H}^{s}}$. This new equation, may be expressed in terms of constant coefficients operators, namely operators $a\left(D_{x}\right)=\mathcal{F}^{-1} a(\xi) \mathcal{F}$, where the Fourier multiplier a is either

- $m_{\kappa}(\xi)=(\xi \tanh \xi)^{1 / 2}\left(1+\kappa^{2} \xi^{2}\right)^{1 / 2}$.
- $H(U ; t, \xi)$ is a diagonal matrix of symbols of order one, with $\operatorname{Im} H(U ; t, \xi)$ of order zero.

One gets

$$
\left(D_{t}-m_{\kappa}\left(D_{x}\right)(1+\underline{\zeta}(U ; t))\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+H\left(U ; t, D_{x}\right)\right) V=R(U) V
$$

where :

- $\underline{\zeta}(U ; t)$ is a function of t, independent of x.
- $R(U)$ is a ρ-smoothing operator.

Moreover, these operators satisfy with $S=-\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ the

- Reality condition: $\overline{H\left(U ; t, D_{x}\right) V}=-S H\left(U ; t, D_{x}\right) S \bar{V}$, that reflects that the initial system was real valued.
- Parity preservation condition: $H\left(U ; t, D_{x}\right)$ preserve even functions.
- Reversibility condition:

$$
S\left[H\left(U ; t, D_{x}\right) V\right]=-H\left(S U ; t, D_{x}\right) S V
$$

The preceding equation implies an energy inequality:

$$
\|V(t, \cdot)\|_{\dot{H}^{s}} \leq\|V(0, \cdot)\|_{\dot{H}^{s}}+C \int_{0}^{t}\left\|\operatorname{Im} H\left(U ; \tau, D_{x}\right) V(\tau, \cdot)\right\|_{\dot{H}^{s}} d \tau
$$

If we knew that $\operatorname{Im} H(U ; t, \xi)=O\left(\|U\|_{\dot{H}^{s}}^{N}\right)$ when $U \rightarrow 0$, we would get

$$
\|V(t, \cdot)\|_{\dot{H}^{s}} \leq \underbrace{\|V(0, \cdot)\|_{\dot{H}^{s}}}_{\sim \epsilon}+C \int_{0}^{t}\|U(\tau, \cdot)\|_{\dot{H}^{s}}^{N}\|V(\tau, \cdot)\|_{\dot{H}^{s}} d \tau
$$

which would imply an a priori bound $\|V(t, \cdot)\|_{\text {H}^{s}} \leq K \epsilon$ if $t \leq c / \epsilon^{N}$. The long time existence result would follow from that.

2nd step: Normal forms. One eliminates by normal forms those contributions to the symbol $\operatorname{Im} H(U ; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p}\right)=\sum_{1}^{\ell} m_{\kappa}\left(n_{j}\right)-\sum_{\ell+1}^{p} m_{\kappa}\left(n_{j}\right), n_{j} \in \mathbb{N}^{*}$ Lemma: If κ is outside a convenient subset of zero measure, and if one is not in the case
\square p even, $\ell=p / 2,\left\{n_{1}\right.$, ,$\left.n_{\ell}\right\}=\left\{n_{\ell+1}, \ldots, n_{p}\right\}$ then

for some c, N_{0}
This allows to solve the equation $D_{\ell}(\cdots) B_{p}(\cdots)=\operatorname{IIm} H_{p}(\cdots)$, except in the case (H). But then

2nd step: Normal forms. One eliminates by normal forms those contributions to the symbol $\operatorname{Im} H(U ; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p}\right)=\sum_{1}^{\ell} m_{\kappa}\left(n_{j}\right)-\sum_{\ell+1}^{p} m_{\kappa}\left(n_{j}\right), n_{j} \in \mathbb{N}^{*}$
Lemma: If κ is outside a convenient subset of zero measure, and if one is not in the case
(H) $\quad p$ even, $\ell=p / 2,\left\{n_{1}, \ldots, n_{\ell}\right\}=\left\{n_{\ell+1}, \ldots, n_{p}\right\}$
then

$$
\left|\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p}\right)\right| \geq c\left(n_{1}+\cdots+n_{p}\right)^{-N_{0}}
$$

for some c, N_{0}.
This allows to solve the equation $\mathcal{D}_{\ell}(\cdots) B_{p}(\cdots)=i \operatorname{Im} H_{p}(\cdots)$, except in the case (H).

2nd step: Normal forms. One eliminates by normal forms those contributions to the symbol $\operatorname{Im} H(U ; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p}\right)=\sum_{1}^{\ell} m_{\kappa}\left(n_{j}\right)-\sum_{\ell+1}^{p} m_{\kappa}\left(n_{j}\right), n_{j} \in \mathbb{N}^{*}$
Lemma: If κ is outside a convenient subset of zero measure, and if one is not in the case
(H) $\quad p$ even, $\ell=p / 2,\left\{n_{1}, \ldots, n_{\ell}\right\}=\left\{n_{\ell+1}, \ldots, n_{p}\right\}$
then

$$
\left|\mathcal{D}_{\ell}\left(n_{1}, \ldots, n_{p}\right)\right| \geq c\left(n_{1}+\cdots+n_{p}\right)^{-N_{0}}
$$

for some c, N_{0}.
This allows to solve the equation $\mathcal{D}_{\ell}(\cdots) B_{p}(\cdots)=i \operatorname{Im} H_{p}(\cdots)$, except in the case (H). But then

$$
\operatorname{Im} H_{p}\left(\Pi_{n_{1}}^{+} U, \ldots, \Pi_{n_{\ell}}^{+} U, \Pi_{n_{\ell+1}}^{-} U, \ldots, \Pi_{n_{p}}^{-} U ; t, \xi\right) \equiv 0
$$

as a consequence of the reality, parity preservation and reversibility conditions.

