Almost global solutions for
the periodic gravity-capillarity equation

Jean-Marc Delort

Université Paris-Nord

(joint work with Massimiliano Berti)



1. The gravity-capillarity wave equations
Air

TN T N N N y=a(tx)

Water
Ad =0 —1<y<n(tx)

bottom 0,® =0




1. The gravity-capillarity wave equations
Air

TN T N N N y=a(tx)

Water
Ad =0 —1 <y <n(t,x)

bottom 0,® =0

For an incompressible and irrotational fluid, one may write the
velocity as v = V& with A® = 0, and express the equation from

(IS Cb\y:n(tyx) and n(t, x).



Craig-Sulem-Zakharov formulation of the gravity-capillarity wave
equations:

o = G(n)y

CGWE 1
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+ kH(n)

where G(n)v is the Dirichlet-Neumann operator defined by
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G(n)tb = (8,9 — Du0s®)] (e ) where H(n) = O | W}
with 1 = Oxn, where g > 0,k > 0, and x € T?.
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e Long time existence for non localized data: Existence of solutions
with data of size € over an interval of time of length ¢ 2.
Ifrim-Tataru (g = 0 or k = 0, periodic data).




Question: Can we do better?

Definition: Let S = [(1) _01] One says that a solution [ }
(CGWE) is reversible if and only for any t m((j” =S m(( ))}

Note that this implies that ¢(0) = 0.

Conversely, 1)(0) = 0 implies that the solution is reversible, since if
we write the equation m] = F[Z} one has

se1] - (5[2)
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Theorem

There is a zero measure subset N' of |0, +cc[?, and for any (g, k)
in |0, +o00[>~N, for any N in N, there is sy > 0 and for any s > sp,
there are ¢ > 0, ¢g > 0 such that, for any € < €g, any
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Reference: There exist special global solutions: time periodic
(Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.



2. Principle of proof on a model

Let m € RY and A, = vV/—A + m? acting on L?(T!). Let u be a
solution to

(Dt — Nm)u = P(u, o)
Ult—o = €ug, o € H(TY,C) s> 1
where P is a polynomial homogeneous of degree p. The Sobolev

energy inequality is

d d S S M S — S
IHu(t, )H,zL,s = a(/\mu,/\muhz = 2Re i(N\;,P(u, 0), N, u)

whence

[[u(t, ) lms < [lu( HH5+C/ lu(r; ks d7-

One gets an a priori bound on an interval of length at least ceP*1,
which implies existence up to such a time. One can get a better
result by a normal forms method.
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Denote by I, the spectral projector associated to the n-th mode of
—A on T!. Replace the j-th argument u by M uj and Al u; by

W/ m? 4+ nJ?I_Injuj, and make act on the equation I, ., .



One gets to solve
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One proves that if m is outside a subset of zero measure and
Z‘l’ﬂ +n; =0, then

IDy(n1,. .., npr1)| > c(third largest among ny, ..., npq)~ "0

except in the trivial case

p+1
p odd,l = 5 {n,....ne} ={nes1,...,npy1}.
Using the structure of the equation, one may check that the

corresponding terms do not contribute to the energy.



3. Case of quasi-linear equations

Consider for instance (D; — Ap)u = |u|?Dyu. The above procedure
would generate a loss of one derivative in the estimates. Instead,
one uses Bony's paralinearization formula

uv = Tyv+ Tyu+ R(u, v) where

Tov— / a(& — n)o(n) dn
[E—n|<n|

so that T,v has the same smoothness as v, and R(u,v) is
smoother than u, v. Our model may be written

(Dt = (Am + TjuDe))u = Toulul* + R(u).
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For (CGWE) we need to write the equation as a paradifferential
system involving symbols that have a Taylor expansion in terms of
the unknown (7,) at an arbitrary order. The nonlinearity involves
analytic expressions in 0y, Ox® and in G(1n)1. One thus needs to
express the Dirichlet-Neumann operator from such symbols.
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Here we need also an asymptotic expansion of the symbols in terms
of (n,%) and also an expansion of the remainders. Instead of using
a variational approach, we construct a Boutet de Monvel
paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as

(De — Op" (A, s t.x. D) [ 1] = R 0)[ 1]

where A is a matrix of symbols of para-differential operators
(depending on 1,v), R(n,1) a smoothing operator, that gains p
derivatives, and OpBW(.) stands for Bony-Weyl quantization.



4. Sketch of proof

1st step: Reductions (Alazard-Métivier, Alazard-Baldi,
Berti-Montalto)

One may rewrite the equation in terms of a new unknown, and
perform series of reductions that bring to a new equation, in terms
of a complex new unknown U = [L‘—j] and an auxiliary C? valued
function V, expressed from U, such that ||U|| s ~ || V|| 4. This
new equation, may be expressed in terms of constant coefficients
operators, namely operators a(Dy) = F~1a(£)F, where the Fourier
multiplier a is either

o m(€) = (§tanh ©)V2(1 + £2¢%)1/2,
e H(U;t,¢) is a diagonal matrix of symbols of order one, with
Im H(U; t, ) of order zero.



One gets
(D = MDY+ (U ) [§ O] + H(U; £,D) )V = R(U)V

where :
e ((U;t) is a function of t, independent of x.
e R(U) is a p-smoothing operator.
Moreover, these operators satisfy with S = —[9}] the
e Reality condition: H(U; t, D)V = —SH(U; t, D,)SV, that
reflects that the initial system was real valued.

e Parity preservation condition: H(U;t, D) preserve even
functions.

¢ Reversibility condition:
S[H(U; t,Ds)V] = —H(SU; t, D,)SV



The preceding equation implies an energy inequality:
t
V() g < VO, ) + C/O [Tm H(U; 7, D) V(7, )| = dT-

If we knew that Im H(U; t, &) = O(||U||",) when U — 0, we would
get

t
V(s < IV(O,')!H5+C/ UG IRV (e d7
—_—— 0

~E

which would imply an a priori bound [|V/(t,-)||5s < Ke if t < c/eV.
The long time existence result would follow from that.
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except in the case (H). But then

Im Hy(M5, U, ... M5 UM U, T Ut €) = 0

ES

as a consequence of the reality, parity preservation and reversibility
conditions.



