Almost global solutions for the periodic gravity-capillarity equation

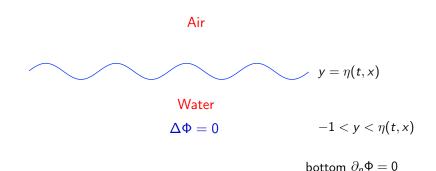
Jean-Marc Delort

Université Paris-Nord

(joint work with Massimiliano Berti)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

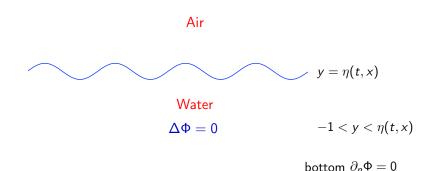
1. The gravity-capillarity wave equations



ション ふゆ く 山 マ チャット しょうくしゃ

For an incompressible and irrotational fluid, one may write the velocity as $v = \nabla \Phi$ with $\Delta \Phi = 0$, and express the equation from $\psi = \Phi|_{y=\eta(t,x)}$ and $\eta(t,x)$.

1. The gravity-capillarity wave equations



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

For an incompressible and irrotational fluid, one may write the velocity as $v = \nabla \Phi$ with $\Delta \Phi = 0$, and express the equation from $\psi = \Phi|_{y=\eta(t,x)}$ and $\eta(t,x)$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$\partial_t \eta = G(\eta)\psi$$
(CGWE)

$$\partial_t \psi = -g\eta - \frac{1}{2}(\partial_x \psi)^2 + \frac{[G(\eta)\psi + \partial_x \psi \partial_x \eta]^2}{2(1 + (\partial_x \eta)^2)} + \kappa H(\eta)$$

where $G(\eta)\psi$ is the Dirichlet-Neumann operator defined by $G(\eta)\psi = (\partial_y \Phi - \partial_x \eta \partial_x \Phi)|_{y=\eta(t,x)}$ where $H(\eta) = \partial_x \left[\frac{\eta'}{\sqrt{1+\eta'^2}}\right]$, with $\eta' = \partial_x \eta$, where $g > 0, \kappa > 0$, and $x \in \mathbb{T}^1$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$\partial_t \eta = \mathbf{G}(\eta)\psi$$
(CGWE)

$$\partial_t \psi = -g\eta - \frac{1}{2}(\partial_x \psi)^2 + \frac{[\mathbf{G}(\eta)\psi + \partial_x \psi \partial_x \eta]^2}{2(1 + (\partial_x \eta)^2)} + \kappa H(\eta)$$

where $G(\eta)\psi$ is the Dirichlet-Neumann operator defined by $G(\eta)\psi = (\partial_y \Phi - \partial_x \eta \partial_x \Phi)|_{y=\eta(t,x)}$ where $H(\eta) = \partial_x \left[\frac{\eta'}{\sqrt{1+\eta'^2}}\right]$, with $\eta' = \partial_x \eta$, where $g > 0, \kappa > 0$, and $x \in \mathbb{T}^1$.

Craig-Sulem-Zakharov formulation of the gravity-capillarity wave equations:

$$\partial_t \eta = G(\eta)\psi$$
(CGWE)

$$\partial_t \psi = -\frac{g}{g}\eta - \frac{1}{2}(\partial_x \psi)^2 + \frac{[G(\eta)\psi + \partial_x \psi \partial_x \eta]^2}{2(1 + (\partial_x \eta)^2)} + \kappa H(\eta)$$

where $G(\eta)\psi$ is the Dirichlet-Neumann operator defined by $G(\eta)\psi = (\partial_y \Phi - \partial_x \eta \partial_x \Phi)|_{y=\eta(t,x)}$ where $H(\eta) = \partial_x \left[\frac{\eta'}{\sqrt{1+\eta'^2}}\right]$, with $\eta' = \partial_x \eta$, where $g > 0, \kappa > 0$, and $x \in \mathbb{T}^1$.

Known results:

• Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.

• Long time existence with small decaying data: **Case** $\kappa = 0$: Sijue Wu, Germain-Masmoudi-Shatah, Ionescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang . **Case** $\kappa > 0$: Deng-Ionescu-Pausader-Pusateri, Germain-Masmoudi-Shatah, Ionescu-Pusateri.

• Long time existence for non localized data: Existence of solutions with data of size ϵ over an interval of time of length ϵ^{-2} . Ifrim-Tataru (g = 0 or $\kappa = 0$, periodic data).

Known results:

• Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.

• Long time existence with small decaying data: **Case** $\kappa = 0$: Sijue Wu, Germain-Masmoudi-Shatah, Ionescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang . **Case** $\kappa > 0$: Deng-Ionescu-Pausader-Pusateri, Germain-Masmoudi-Shatah, Ionescu-Pusateri.

• Long time existence for non localized data: Existence of solutions with data of size ϵ over an interval of time of length ϵ^{-2} . Ifrim-Tataru (g = 0 or $\kappa = 0$, periodic data).

Known results:

• Local existence: Nalimov, Yoshihara, S. Wu, Lannes, Coutand-Shkroller, Beyer and Gunther, Ming-Zhang, Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.

• Long time existence with small decaying data: **Case** $\kappa = 0$: Sijue Wu, Germain-Masmoudi-Shatah, Ionescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang . **Case** $\kappa > 0$: Deng-Ionescu-Pausader-Pusateri, Germain-Masmoudi-Shatah, Ionescu-Pusateri.

• Long time existence for non localized data: Existence of solutions with data of size ϵ over an interval of time of length ϵ^{-2} . Ifrim-Tataru (g = 0 or $\kappa = 0$, periodic data).

Question: Can we do better? **Definition**: Let $S = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. One says that a solution $\begin{bmatrix} \eta \\ \psi \end{bmatrix}$ of (CGWE) is *reversible* if and only for any $t \begin{bmatrix} \eta(-t) \\ \psi(-t) \end{bmatrix} = S \begin{bmatrix} \eta(t) \\ \psi(t) \end{bmatrix}$. Note that this implies that $\psi(0) = 0$.

Conversely, $\psi(0) = 0$ implies that the solution is reversible, since if we write the equation $\begin{bmatrix} \dot{\eta} \\ \dot{\psi} \end{bmatrix} = F \begin{bmatrix} \eta \\ \psi \end{bmatrix}$, one has

 $SF\begin{bmatrix}\eta\\\psi\end{bmatrix} = -F\left(S\begin{bmatrix}\eta\\\psi\end{bmatrix}\right).$

(日) (伊) (日) (日) (日) (0) (0)

Notation: • $\eta \in H^{s+\frac{1}{4}}_{0,ev}(\mathbb{T}^1)$ Sobolev space of even functions with zero mean.

• $\psi \in \dot{H}^{s-\frac{1}{4}}_{ev}(\mathbb{T}^1)$ Sobolev space of even functions modulo constants.

Theorem

There is a zero measure subset \mathcal{N} of $]0, +\infty[^2$, and for any (g, κ) in $]0, +\infty[^2-\mathcal{N}, \text{ for any } N \text{ in } \mathbb{N}, \text{ there is } s_0 > 0 \text{ and for any } s > s_0,$ there are $c > 0, \epsilon_0 > 0$ such that, for any $\epsilon < \epsilon_0$, any $\eta_0 \in H^{s+\frac{1}{4}}_{0,\text{ev}}(\mathbb{T}^1)$, with norm smaller than ϵ , (CGWE) has a unique solution $(\eta, \psi) \in C^0(] - T_{\epsilon}, T_{\epsilon}[, H^{s+\frac{1}{4}}_{0,\text{ev}}(\mathbb{T}^1) \times \dot{H}^{s-\frac{1}{4}}_{\text{ev}}(\mathbb{T}^1))$ with $T_{\epsilon} \geq c\epsilon^{-N}$, and Cauchy data $(\eta, \psi)|_{t=0} = (\eta_0, 0)$. **Reference**: There exist special global solutions: time periodic

Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.

Notation: • $\eta \in H^{s+\frac{1}{4}}_{0,ev}(\mathbb{T}^1)$ Sobolev space of even functions with zero mean.

• $\psi \in \dot{H}^{s-\frac{1}{4}}_{ev}(\mathbb{T}^1)$ Sobolev space of even functions modulo constants.

Theorem

There is a zero measure subset \mathcal{N} of $]0, +\infty[^2$, and for any (g, κ) in $]0, +\infty[^2-\mathcal{N}, \text{ for any } N \text{ in } \mathbb{N}, \text{ there is } s_0 > 0 \text{ and for any } s > s_0,$ there are $c > 0, \epsilon_0 > 0$ such that, for any $\epsilon < \epsilon_0$, any $\eta_0 \in H^{s+\frac{1}{4}}_{0,\mathrm{ev}}(\mathbb{T}^1)$, with norm smaller than ϵ , (CGWE) has a unique solution $(\eta, \psi) \in C^0(] - T_{\epsilon}, T_{\epsilon}[, H^{s+\frac{1}{4}}_{0,\mathrm{ev}}(\mathbb{T}^1) \times \dot{H}^{s-\frac{1}{4}}_{\mathrm{ev}}(\mathbb{T}^1))$ with $T_{\epsilon} \ge c\epsilon^{-\mathcal{N}}$, and Cauchy data $(\eta, \psi)|_{t=0} = (\eta_0, 0).$

Reference: There exist special global solutions: time periodic (Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.

Notation: • $\eta \in H^{s+\frac{1}{4}}_{0,ev}(\mathbb{T}^1)$ Sobolev space of even functions with zero mean.

• $\psi \in \dot{H}^{s-\frac{1}{4}}_{\mathrm{ev}}(\mathbb{T}^1)$ Sobolev space of even functions modulo constants.

Theorem

There is a zero measure subset \mathcal{N} of $]0, +\infty[^2$, and for any (g, κ) in $]0, +\infty[^2-\mathcal{N}, \text{ for any } N \text{ in } \mathbb{N}, \text{ there is } s_0 > 0 \text{ and for any } s > s_0,$ there are $c > 0, \epsilon_0 > 0$ such that, for any $\epsilon < \epsilon_0$, any $\eta_0 \in H^{s+\frac{1}{4}}_{0,\mathrm{ev}}(\mathbb{T}^1)$, with norm smaller than ϵ , (CGWE) has a unique solution $(\eta, \psi) \in C^0(] - T_{\epsilon}, T_{\epsilon}[, H^{s+\frac{1}{4}}_{0,\mathrm{ev}}(\mathbb{T}^1) \times \dot{H}^{s-\frac{1}{4}}_{\mathrm{ev}}(\mathbb{T}^1))$ with $T_{\epsilon} \ge c\epsilon^{-N}$, and Cauchy data $(\eta, \psi)|_{t=0} = (\eta_0, 0)$. Reference: There exist special global solutions: time periodic (Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.

2. Principle of proof on a model

Let $m \in \mathbb{R}^*_+$ and $\Lambda_m = \sqrt{-\Delta + m^2}$ acting on $L^2(\mathbb{T}^1)$. Let u be a solution to

$$(D_t - \Lambda_m)u = P(u, \overline{u})$$

 $u|_{t=0} = \epsilon u_0, \quad u_0 \in H^s(\mathbb{T}^1, \mathbb{C}) \ s \gg 1$

where P is a polynomial homogeneous of degree p. The Sobolev energy inequality is

$$\frac{d}{dt}\|u(t,\cdot)\|_{H^s}^2 = \frac{d}{dt}\langle \Lambda_m^s u, \Lambda_m^s u \rangle_{L^2} = 2 \operatorname{Re} i \langle \Lambda_m^s P(u,\bar{u}), \Lambda_m^s u \rangle$$

whence

$$\|u(t,\cdot)\|_{H^{s}} \leq \underbrace{\|u(0,\cdot)\|_{H^{s}}}_{\sim \epsilon} + C \int_{0}^{t} \|u(\tau,\cdot)\|_{H^{s}}^{p} d\tau.$$

One gets an a priori bound on an interval of length at least $c\epsilon^{-p+1}$, which implies existence up to such a time. One can get a better result by a normal forms method.

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

 $(D_t - \Lambda_m)[u + Q(u, \bar{u})] = (\text{terms of order } q > p)$

+ (terms of order p that do not contribute to the energy).

Then as $\|Q(u, \bar{u})\|_{H^s} = O(\|u\|_{H^s}^2)$, one gets a time of existence in $c\epsilon^{-q+1}$.

Take $P(u, \bar{u}) = u^{\ell} \bar{u}^{p-\ell}$ and look for $Q = M(\underbrace{u, \dots, u}_{\ell}, \underbrace{\bar{u}, \dots, \bar{u}}_{p-\ell})$ such that $(D_t - \Lambda_m)Q = -u^{\ell} \bar{u}^{p-\ell} + h.$ o. terms. Then $(D_t - \Lambda_m)M(u, \dots, u, \bar{u}, \dots, \bar{u}) = \sum_{1}^{\ell} M(u, \dots, \Lambda_m u, \dots, u, \bar{u}, \dots, \bar{u})$

 $-\sum_{\ell+1}^{\cdot} \mathcal{M}(u,\ldots,u,\bar{u},\ldots,\Lambda_m\bar{u},\ldots,\bar{u}) - \Lambda_m \mathcal{M}(u,\ldots,\bar{u}) + \text{ h. o. terms.}$

Denote by Π_n the spectral projector associated to the *n*-th mode of $-\Delta$ on \mathbb{T}^1 . Replace the *j*-th argument *u* by $\Pi_{n_j} u_j$ and $\Lambda_m \Pi_{n_j} u_j$ by $\sqrt{m^2 + n_j^2} \Pi_{n_j} u_j$, and make act on the equation $\Pi_{n_{p+1}}$.

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

 $(D_t - \Lambda_m)[u + Q(u, \bar{u})] = (\text{terms of order } q > p)$ + (terms of order p that do not contribute to the energy). Then as $||Q(u, \bar{u})||_{H^s} = O(||u||_{H^s}^2)$, one gets a time of existence in $c\epsilon^{-q+1}$. Take $P(u, \bar{u}) = u^{\ell} \bar{u}^{p-\ell}$ and look for $Q = M(\underbrace{u, \dots, u}_{\ell}, \underbrace{\bar{u}, \dots, \bar{u}}_{p-\ell})$ such that $(D_t - \Lambda_m)Q = -u^{\ell} \bar{u}^{p-\ell} + h.$ o. terms. Then $(D_t - \Lambda_m)M(u, \dots, u, \bar{u}, \dots, \bar{u}) = \sum_{1}^{\ell} M(u, \dots, \Lambda_m u, \dots, u, \bar{u}, \dots, \bar{u})$

 $-\sum_{\ell+1}^{\prime} M(u,\ldots,u,\bar{u},\ldots,\Lambda_m\bar{u},\ldots,\bar{u}) - \Lambda_m M(u,\ldots,\bar{u}) + \text{ h. o. terms.}$

Denote by Π_n the spectral projector associated to the *n*-th mode of $-\Delta$ on \mathbb{T}^1 . Replace the *j*-th argument *u* by $\Pi_{n_j} u_j$ and $\Lambda_m \Pi_{n_j} u_j$ by $\sqrt{m^2 + n_j^2} \Pi_{n_j} u_j$, and make act on the equation $\Pi_{n_{p+1}}$.

Look for some $Q(u, \bar{u})$ homogeneous of degree p such that

 $(D_t - \Lambda_m)[u + Q(u, \bar{u})] = (\text{terms of order } q > p)$ + (terms of order p that do not contribute to the energy). Then as $||Q(u, \bar{u})||_{H^s} = O(||u||_{H^s}^2)$, one gets a time of existence in $c\epsilon^{-q+1}$. Take $P(u, \bar{u}) = u^{\ell} \bar{u}^{p-\ell}$ and look for $Q = M(\underbrace{u, \dots, u}_{\ell}, \underbrace{\bar{u}, \dots, \bar{u}}_{p-\ell})$ such that $(D_t - \Lambda_m)Q = -u^{\ell} \bar{u}^{p-\ell} + h.$ o. terms. Then $(D_t - \Lambda_m)M(u, \dots, u, \bar{u}, \dots, \bar{u}) = \sum_{1}^{\ell} M(u, \dots, \Lambda_m u, \dots, u, \bar{u}, \dots, \bar{u})$

 $-\sum_{\ell+1}^{\prime} \mathcal{M}(u,\ldots,u,\bar{u},\ldots,\Lambda_m\bar{u},\ldots,\bar{u}) - \Lambda_m \mathcal{M}(u,\ldots,\bar{u}) + \text{ h. o. terms.}$

Denote by Π_n the spectral projector associated to the *n*-th mode of $-\Delta$ on \mathbb{T}^1 . Replace the *j*-th argument *u* by $\Pi_{n_j} u_j$ and $\Lambda_m \Pi_{n_j} u_j$ by $\sqrt{m^2 + n_j^2} \Pi_{n_j} u_j$, and make act on the equation $\Pi_{n_{p+1}}$.

One gets to solve

$$\mathcal{D}_{\ell}(n_{1},...,n_{p+1})\Pi_{n_{p+1}}M(\Pi_{n_{1}}u_{1},...,\Pi_{n_{p}}u_{p})$$

= $-\Pi_{n_{p+1}}(\prod_{j=1}^{p}\Pi_{n_{j}}u_{j})$

where

$$\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1}) = \sum_{1}^{\ell} \sqrt{m^2 + n_j^2} - \sum_{\ell+1}^{p+1} \sqrt{m^2 + n_j^2}.$$

One proves that if m is outside a subset of zero measure and $\sum_{j=1}^{p+1} \pm n_j = 0$, then

 $|\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1})| \geq c (\text{third largest among } n_1,\ldots,n_{p+1})^{-N_0}$

except in the trivial case

$$p \text{ odd}, \ell = \frac{p+1}{2}, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_{p+1}\}.$$

Using the structure of the equation, one may check that the corresponding terms do not contribute to the energy, $a_{\pm}, a_{\pm}, a_{\pm},$

One gets to solve

$$\mathcal{D}_{\ell}(n_{1},...,n_{p+1})\Pi_{n_{p+1}}M(\Pi_{n_{1}}u_{1},...,\Pi_{n_{p}}u_{p})$$

= $-\Pi_{n_{p+1}}(\prod_{j=1}^{p}\Pi_{n_{j}}u_{j})$

where

$$\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1}) = \sum_{1}^{\ell} \sqrt{m^2 + n_j^2} - \sum_{\ell+1}^{p+1} \sqrt{m^2 + n_j^2}.$$

One proves that if m is outside a subset of zero measure and $\sum_{1}^{p+1} \pm n_j = 0$, then

 $|\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1})| \geq c (\text{third largest among } n_1,\ldots,n_{p+1})^{-N_0}$

except in the trivial case

$$p \text{ odd}, \ell = \frac{p+1}{2}, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_{p+1}\}.$$

Using the structure of the equation, one may check that the corresponding terms do not contribute to the energy, $a_{\pm}, a_{\pm}, a_{\pm},$

One gets to solve

$$\mathcal{D}_{\ell}(n_{1},...,n_{p+1})\Pi_{n_{p+1}}M(\Pi_{n_{1}}u_{1},...,\Pi_{n_{p}}u_{p})$$

= $-\Pi_{n_{p+1}}(\prod_{j=1}^{p}\Pi_{n_{j}}u_{j})$

where

$$\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1}) = \sum_{1}^{\ell} \sqrt{m^2 + n_j^2} - \sum_{\ell+1}^{p+1} \sqrt{m^2 + n_j^2}.$$

One proves that if m is outside a subset of zero measure and $\sum_{1}^{p+1} \pm n_j = 0$, then

 $|\mathcal{D}_{\ell}(n_1,\ldots,n_{p+1})| \geq c (\text{third largest among } n_1,\ldots,n_{p+1})^{-N_0}$

except in the trivial case

$$p \text{ odd}, \ell = \frac{p+1}{2}, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_{p+1}\}.$$

Using the *structure* of the equation, one may check that the corresponding terms do not contribute to the energy. (a = b + b) = a = b = a

3. Case of quasi-linear equations

Consider for instance $(D_t - \Lambda_m)u = |u|^2 D_x u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $uv = T_uv + T_yu + R(u, v)$ where

$$\widehat{T_u v} = \int_{|\xi - \eta| \ll |\eta|} \hat{u}(\xi - \eta) \hat{v}(\eta) \, d\eta$$

so that $T_u v$ has the same smoothness as v, and R(u, v) is smoother than u, v. Our model may be written

$$(D_t - (\Lambda_m + T_{|u|^2}D_x))u = T_{D_x u}|u|^2 + R(u).$$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity involves analytic expressions in $\partial_x \eta$, $\partial_x \psi$ and in $G(\eta)\psi$. One thus needs to express the Dirichlet-Neumann operator from such symbols.

3. Case of quasi-linear equations

Consider for instance $(D_t - \Lambda_m)u = |u|^2 D_x u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $uv = T_uv + T_yu + R(u, v)$ where

$$\widehat{T_u v} = \int_{|\xi - \eta| \ll |\eta|} \hat{u}(\xi - \eta) \hat{v}(\eta) \, d\eta$$

so that $T_u v$ has the same smoothness as v, and R(u, v) is smoother than u, v. Our model may be written

 $(D_t - \operatorname{Op}^{\operatorname{BW}}(\sqrt{m^2 + \xi^2} + |u|^2 \xi))u = \operatorname{semi-linear} + \operatorname{smoothing terms}.$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity involves analytic expressions in $\partial_x \eta$, $\partial_x \psi$ and in $G(\eta)\psi$. One thus needs to express the Dirichlet-Neumann operator from such symbols.

3. Case of quasi-linear equations

Consider for instance $(D_t - \Lambda_m)u = |u|^2 D_x u$. The above procedure would generate a loss of one derivative in the estimates. Instead, one uses Bony's paralinearization formula $uv = T_uv + T_yu + R(u, v)$ where

$$\widehat{T_u v} = \int_{|\xi - \eta| \ll |\eta|} \hat{u}(\xi - \eta) \hat{v}(\eta) \, d\eta$$

so that $T_u v$ has the same smoothness as v, and R(u, v) is smoother than u, v. Our model may be written

 $(D_t - \operatorname{Op}^{\mathrm{BW}}(\sqrt{m^2 + \xi^2} + |u|^2 \xi))u = \operatorname{semi-linear} + \operatorname{smoothing terms}.$

For (CGWE) we need to write the equation as a paradifferential system involving symbols that have a Taylor expansion in terms of the unknown (η, ψ) at an arbitrary order. The nonlinearity involves analytic expressions in $\partial_x \eta$, $\partial_x \psi$ and in $G(\eta)\psi$. One thus needs to express the Dirichlet-Neumann operator from such symbols.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \le y \le \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms of (η, ψ) and also an expansion of the remainders. Instead of using a variational approach, we construct a Boutet de Monvel paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as

$$\left(D_t - \operatorname{Op}^{\mathrm{BW}}(A(\eta, \psi; t, x, \xi))\right) \begin{bmatrix} \eta \\ \psi \end{bmatrix} = R(\eta, \psi) \begin{bmatrix} \eta \\ \psi \end{bmatrix}$$

where A is a matrix of symbols of para-differential operators (depending on η, ψ), $R(\eta, \psi)$ a smoothing operator, that gains ρ derivatives, and $Op^{BW}(\cdot)$ stands for Bony-Weyl quantization.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \le y \le \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms of (η, ψ) and also an expansion of the remainders. Instead of using a variational approach, we construct a Boutet de Monvel paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as

 $\left(D_t - \operatorname{Op}^{\mathrm{BW}}(A(\eta, \psi; t, x, \xi))\right) \left| \begin{array}{c} \eta \\ \psi \end{array} \right| = R(\eta, \psi) \left| \begin{array}{c} \eta \\ \psi \end{array} \right|$

where A is a matrix of symbols of para-differential operators (depending on η, ψ), $R(\eta, \psi)$ a smoothing operator, that gains ρ derivatives, and $Op^{BW}(\cdot)$ stands for Bony-Weyl quantization.

One knows that if η is smooth, the Dirichlet-Neumann operator $G(\eta)$ corresponding to the Dirichlet problem in a strip $-1 \le y \le \eta(x)$ is a pseudo-differential operator. If η has limited regularity, it may be written as a paradifferential operator (Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms of (η, ψ) and also an expansion of the remainders. Instead of using a variational approach, we construct a Boutet de Monvel paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as

$$\left(D_t - \operatorname{Op}^{\mathrm{BW}}(A(\eta, \psi; t, x, \xi)))\right) \begin{bmatrix} \eta \\ \psi \end{bmatrix} = R(\eta, \psi) \begin{bmatrix} \eta \\ \psi \end{bmatrix}$$

where A is a matrix of symbols of para-differential operators (depending on η, ψ), $R(\eta, \psi)$ a smoothing operator, that gains ρ derivatives, and $\mathrm{Op}^{\mathrm{BW}}(\cdot)$ stands for Bony-Weyl quantization.

4. Sketch of proof

1st step: <u>Reductions</u> (Alazard-Métivier, Alazard-Baldi, Berti-Montalto)

One may rewrite the equation in terms of a new unknown, and perform series of reductions that bring to a new equation, in terms of a complex new unknown $U = \begin{bmatrix} u \\ u \end{bmatrix}$, and an auxiliary \mathbb{C}^2 valued function V, expressed from U, such that $||U||_{\dot{H}^s} \sim ||V||_{\dot{H}^s}$. This new equation, may be expressed in terms of constant coefficients operators, namely operators $a(D_x) = \mathcal{F}^{-1}a(\xi)\mathcal{F}$, where the Fourier multiplier a is either

- $m_{\kappa}(\xi) = (\xi \tanh \xi)^{1/2} (1 + \kappa^2 \xi^2)^{1/2}.$
- $H(U; t, \xi)$ is a diagonal matrix of symbols of order one, with $\operatorname{Im} H(U; t, \xi)$ of order zero.

(日) (伊) (日) (日) (日) (0) (0)

One gets

 $\left(D_t - m_{\kappa}(D_{\mathsf{x}})(1 + \underline{\zeta}(U; t))\left[\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right] + H(U; t, D_{\mathsf{x}})\right) V = R(U) V$

where :

- $\zeta(U; t)$ is a function of t, independent of x.
- R(U) is a ρ -smoothing operator.

Moreover, these operators satisfy with $S = -\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ the

- Reality condition: $\overline{H(U; t, D_x)V} = -SH(U; t, D_x)S\overline{V}$, that reflects that the initial system was real valued.
- **Parity preservation condition**: $H(U; t, D_x)$ preserve even functions.

ション ふゆ く 山 マ チャット しょうくしゃ

• Reversibility condition:

 $S[H(U; t, D_x)V] = -H(SU; t, D_x)SV$

The preceding equation implies an energy inequality:

$$\|V(t,\cdot)\|_{\dot{H}^s} \leq \|V(0,\cdot)\|_{\dot{H}^s} + C \int_0^t \|\operatorname{Im} H(U;\tau,D_x)V(\tau,\cdot)\|_{\dot{H}^s} \, d\tau.$$

If we knew that $\operatorname{Im} H(U; t, \xi) = O(\|U\|_{\dot{H}^s}^N)$ when $U \to 0$, we would get

$$\|V(t,\cdot)\|_{\dot{H}^s} \leq \underbrace{\|V(0,\cdot)\|_{\dot{H}^s}}_{\sim \epsilon} + C \int_0^t \|U(\tau,\cdot)\|_{\dot{H}^s}^N \|V(\tau,\cdot)\|_{\dot{H}^s} \, d\tau$$

which would imply an a priori bound $\|V(t, \cdot)\|_{\dot{H}^s} \leq K\epsilon$ if $t \leq c/\epsilon^N$. The long time existence result would follow from that.

ション ふゆ アメリア メリア しょうくしゃ

2nd step: <u>Normal forms</u>. One eliminates by normal forms those contributions to the symbol Im $H(U; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}(n_1, \ldots, n_p) = \sum_{i=1}^{\ell} m_{\kappa}(n_j) - \sum_{\ell=1}^{p} m_{\kappa}(n_j), n_j \in \mathbb{N}^*$

Lemma: If κ is outside a convenient subset of zero measure, and if one is **not** in the case

(H)
$$p \text{ even}, \ \ell = p/2, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_p\}$$

then

$$|\mathcal{D}_\ell(n_1,\ldots,n_p)| \ge c(n_1+\cdots+n_p)^{-N_0}$$

for some c, N_0 .

This allows to solve the equation $\mathcal{D}_{\ell}(\cdots)B_{p}(\cdots) = i \mathrm{Im} H_{p}(\cdots)$, except in the case (H). But then

$$\operatorname{Im} H_p(\Pi_{n_1}^+ U, \dots, \Pi_{n_\ell}^+ U, \Pi_{n_{\ell+1}}^- U, \dots, \Pi_{n_p}^- U; t, \xi) \equiv 0$$

as a consequence of the reality, parity preservation and reversibility conditions.

2nd step: <u>Normal forms</u>. One eliminates by normal forms those contributions to the symbol Im $H(U; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}(n_1, \ldots, n_p) = \sum_{1}^{\ell} m_{\kappa}(n_j) - \sum_{\ell+1}^{p} m_{\kappa}(n_j), n_j \in \mathbb{N}^*$ **Lemma**: If κ is outside a convenient subset of zero measure, and if one is **not** in the case

(H)
$$p \text{ even}, \ell = p/2, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_p\}$$

then

$$|\mathcal{D}_{\ell}(n_1,\ldots,n_p)| \geq c(n_1+\cdots+n_p)^{-N_0}$$

for some c, N_0 .

This allows to solve the equation $\mathcal{D}_{\ell}(\cdots)B_{p}(\cdots) = i \mathrm{Im} H_{p}(\cdots)$, except in the case (H). But then

$$\operatorname{Im} H_{\rho}(\Pi_{n_{1}}^{+}U,\ldots,\Pi_{n_{\ell}}^{+}U,\Pi_{n_{\ell+1}}^{-}U,\ldots,\Pi_{n_{\rho}}^{-}U;t,\xi)\equiv 0$$

as a consequence of the reality, parity preservation and reversibility conditions.

2nd step: <u>Normal forms</u>. One eliminates by normal forms those contributions to the symbol Im $H(U; t, \xi)$ homogeneous of degree smaller than N. One proceeds as in the model case, dividing by $\mathcal{D}_{\ell}(n_1, \ldots, n_p) = \sum_{1}^{\ell} m_{\kappa}(n_j) - \sum_{\ell+1}^{p} m_{\kappa}(n_j), n_j \in \mathbb{N}^*$ Lemma: If κ is outside a convenient subset of zero measure, and if one is **not** in the case

(H)
$$p \text{ even}, \ell = p/2, \{n_1, \ldots, n_\ell\} = \{n_{\ell+1}, \ldots, n_p\}$$

then

$$|\mathcal{D}_{\ell}(n_1,\ldots,n_p)| \geq c(n_1+\cdots+n_p)^{-N_0}$$

for some c, N_0 .

This allows to solve the equation $\mathcal{D}_{\ell}(\cdots)B_{p}(\cdots) = i \mathrm{Im} H_{p}(\cdots)$, except in the case (H). But then

$$\operatorname{Im} H_p(\Pi_{n_1}^+ U, \ldots, \Pi_{n_\ell}^+ U, \Pi_{n_{\ell+1}}^- U, \ldots, \Pi_{n_p}^- U; t, \xi) \equiv 0$$