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1. The gravity-capillarity wave equations

Air

y = η(t, x)

Water

∆Φ = 0 −1 < y < η(t, x)

bottom ∂nΦ = 0

For an incompressible and irrotational fluid, one may write the
velocity as v = ∇Φ with ∆Φ = 0, and express the equation from
ψ = Φ|y=η(t,x) and η(t, x).
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Craig-Sulem-Zakharov formulation of the gravity-capillarity wave
equations:

∂tη = G (η)ψ

∂tψ = −gη − 1
2

(∂xψ)2 +
[G (η)ψ + ∂xψ∂xη]2

2(1 + (∂xη)2)
+ κH(η)

(CGWE)

where G (η)ψ is the Dirichlet-Neumann operator defined by
G (η)ψ = (∂yΦ− ∂xη∂xΦ)|y=η(t,x) where H(η) = ∂x

[
η′√

1+η′2

]
,

with η′ = ∂xη, where g > 0, κ > 0, and x ∈ T1.
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Known results:
• Local existence: Nalimov, Yoshihara, S. Wu, Lannes,
Coutand-Shkroller, Beyer and Gunther, Ming-Zhang,
Alazard-Burq-Zuily, Ambrose, Ambrose-Masmoudi, Schweizer.

• Long time existence with small decaying data:
Case κ = 0: Sijue Wu, Germain-Masmoudi-Shatah,
Ionescu-Pusateri, Alazard-D., Ifrim-Tataru, Wang .
Case κ > 0: Deng-Ionescu-Pausader-Pusateri,
Germain-Masmoudi-Shatah, Ionescu-Pusateri.

• Long time existence for non localized data: Existence of solutions
with data of size ε over an interval of time of length ε−2.
Ifrim-Tataru (g = 0 or κ = 0, periodic data).
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Question: Can we do better?

Definition: Let S =

[
1 0
0 −1

]
. One says that a solution

[
η
ψ

]
of

(CGWE) is reversible if and only for any t
[
η(−t)
ψ(−t)

]
= S

[
η(t)
ψ(t)

]
.

Note that this implies that ψ(0) = 0.

Conversely, ψ(0) = 0 implies that the solution is reversible, since if
we write the equation

[
η̇

ψ̇

]
= F

[
η
ψ

]
, one has

SF
[
η
ψ

]
= −F

(
S
[
η
ψ

])
.



Notation: • η ∈ H
s+ 1

4
0,ev (T1) Sobolev space of even functions with

zero mean.
• ψ ∈ Ḣ

s− 1
4

ev (T1) Sobolev space of even functions modulo
constants.

Theorem
There is a zero measure subset N of ]0,+∞[2, and for any (g , κ)
in ]0,+∞[2−N , for any N in N, there is s0 > 0 and for any s > s0,
there are c > 0, ε0 > 0 such that, for any ε < ε0, any

η0 ∈ H
s+ 1

4
0,ev (T1), with norm smaller than ε, (CGWE) has a unique

solution (η, ψ) ∈ C 0(]− Tε,Tε[,H
s+ 1

4
0,ev (T1)× Ḣ

s− 1
4

ev (T1)) with
Tε ≥ cε−N , and Cauchy data (η, ψ)|t=0 = (η0, 0).
Reference: There exist special global solutions: time periodic
(Alazard-Baldi) or quasi-periodic (Berti-Montalto) solutions.
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2. Principle of proof on a model
Let m ∈ R∗+ and Λm =

√
−∆ + m2 acting on L2(T1). Let u be a

solution to

(Dt − Λm)u = P(u, ū)

u|t=0 = εu0, u0 ∈ Hs(T1,C) s � 1

where P is a polynomial homogeneous of degree p. The Sobolev
energy inequality is

d

dt
‖u(t, ·)‖2Hs =

d

dt
〈Λs

mu,Λ
s
mu〉L2 = 2Re i〈Λs

mP(u, ū),Λs
mu〉

whence

‖u(t, ·)‖Hs ≤ ‖u(0, ·)‖Hs︸ ︷︷ ︸
∼ε

+C

∫ t

0
‖u(τ, ·)‖pHs dτ.

One gets an a priori bound on an interval of length at least cε−p+1,
which implies existence up to such a time. One can get a better
result by a normal forms method.



Look for some Q(u, ū) homogeneous of degree p such that

(Dt − Λm)[u + Q(u, ū)] = (terms of order q > p)

+ (terms of order p that do not contribute to the energy).

Then as ‖Q(u, ū)‖Hs = O(‖u‖2Hs ), one gets a time of existence in
cε−q+1.

Take P(u, ū) = u`ūp−` and look for Q = M(u, . . . , u︸ ︷︷ ︸
`

, ū, . . . , ū︸ ︷︷ ︸
p−`

)

such that (Dt − Λm)Q = −u`ūp−` + h. o. terms. Then

(Dt − Λm)M(u, . . . , u, ū, . . . , ū) =
∑̀

1

M(u, . . . ,Λmu, . . . , u, ū, . . . , ū)

−
p∑

`+1

M(u, . . . , u, ū, . . . ,Λmū, . . . , ū)−ΛmM(u, . . . , ū) + h. o. terms.

Denote by Πn the spectral projector associated to the n-th mode of
−∆ on T1. Replace the j-th argument u by Πnjuj and ΛmΠnjuj by√

m2 + n2
j Πnjuj , and make act on the equation Πnp+1 .
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Take P(u, ū) = u`ūp−` and look for Q = M(u, . . . , u︸ ︷︷ ︸
`
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One gets to solve

D`(n1, . . . , np+1)Πnp+1M(Πn1u1, . . . ,Πnpup)

= −Πnp+1

( p∏
1

Πnjuj
)

where

D`(n1, . . . , np+1) =
∑̀

1

√
m2 + n2

j −
p+1∑
`+1

√
m2 + n2

j .

One proves that if m is outside a subset of zero measure and∑p+1
1 ±nj = 0, then

|D`(n1, . . . , np+1)| ≥ c(third largest among n1, . . . , np+1)−N0

except in the trivial case

p odd, ` =
p + 1
2

, {n1, . . . , n`} = {n`+1, . . . , np+1}.

Using the structure of the equation, one may check that the
corresponding terms do not contribute to the energy.
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3. Case of quasi-linear equations
Consider for instance (Dt − Λm)u = |u|2Dxu. The above procedure
would generate a loss of one derivative in the estimates. Instead,
one uses Bony’s paralinearization formula
uv = Tuv + Tvu + R(u, v) where

T̂uv =

∫
|ξ−η|�|η|

û(ξ − η)v̂(η) dη

so that Tuv has the same smoothness as v , and R(u, v) is
smoother than u, v . Our model may be written

(Dt − (Λm + T|u|2Dx))u = TDxu|u|
2 + R(u).

For (CGWE) we need to write the equation as a paradifferential
system involving symbols that have a Taylor expansion in terms of
the unknown (η, ψ) at an arbitrary order. The nonlinearity involves
analytic expressions in ∂xη, ∂xψ and in G (η)ψ. One thus needs to
express the Dirichlet-Neumann operator from such symbols.
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One knows that if η is smooth, the Dirichlet-Neumann operator
G (η) corresponding to the Dirichlet problem in a strip
−1 ≤ y ≤ η(x) is a pseudo-differential operator. If η has limited
regularity, it may be written as a paradifferential operator
(Alazard-Métivier, Alazard-Burq-Zuily).

Here we need also an asymptotic expansion of the symbols in terms
of (η, ψ) and also an expansion of the remainders. Instead of using
a variational approach, we construct a Boutet de Monvel
paradifferential parametrix for the Dirichlet problem.

This allows to write the equation as(
Dt −OpBW(A(η, ψ; t, x , ξ))

)[ η
ψ

]
= R(η, ψ)

[
η
ψ

]
where A is a matrix of symbols of para-differential operators
(depending on η, ψ), R(η, ψ) a smoothing operator, that gains ρ
derivatives, and OpBW(·) stands for Bony-Weyl quantization.
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4. Sketch of proof

1st step: Reductions (Alazard-Métivier, Alazard-Baldi,
Berti-Montalto)

One may rewrite the equation in terms of a new unknown, and
perform series of reductions that bring to a new equation, in terms
of a complex new unknown U =

[
u
ū

]
, and an auxiliary C2 valued

function V , expressed from U, such that ‖U‖Ḣs ∼ ‖V ‖Ḣs . This
new equation, may be expressed in terms of constant coefficients
operators, namely operators a(Dx) = F−1a(ξ)F , where the Fourier
multiplier a is either

• mκ(ξ) = (ξ tanh ξ)1/2(1 + κ2ξ2)1/2.
• H(U; t, ξ) is a diagonal matrix of symbols of order one, with

ImH(U; t, ξ) of order zero.



One gets(
Dt −mκ(Dx)(1 + ζ(U; t))

[ 1 0
0 −1

]
+ H(U; t,Dx)

)
V = R(U)V

where :
• ζ(U; t) is a function of t, independent of x .
• R(U) is a ρ-smoothing operator.
Moreover, these operators satisfy with S = −

[
0 1
1 0
]
the

• Reality condition: H(U; t,Dx)V = −SH(U; t,Dx)SV , that
reflects that the initial system was real valued.

• Parity preservation condition: H(U; t,Dx) preserve even
functions.

• Reversibility condition:
S [H(U; t,Dx)V ] = −H(SU; t,Dx)SV



The preceding equation implies an energy inequality:

‖V (t, ·)‖Ḣs ≤ ‖V (0, ·)‖Ḣs + C

∫ t

0
‖ImH(U; τ,Dx)V (τ, ·)‖Ḣs dτ.

If we knew that ImH(U; t, ξ) = O(‖U‖N
Ḣs ) when U → 0, we would

get

‖V (t, ·)‖Ḣs ≤ ‖V (0, ·)‖Ḣs︸ ︷︷ ︸
∼ε

+C

∫ t

0
‖U(τ, ·)‖N

Ḣs‖V (τ, ·)‖Ḣs dτ

which would imply an a priori bound ‖V (t, ·)‖Ḣs ≤ Kε if t ≤ c/εN .
The long time existence result would follow from that.



2nd step: Normal forms. One eliminates by normal forms those
contributions to the symbol ImH(U; t, ξ) homogeneous of degree
smaller than N. One proceeds as in the model case,
dividing by D`(n1, . . . , np) =

∑`
1 mκ(nj)−

∑p
`+1 mκ(nj), nj ∈ N∗

Lemma: If κ is outside a convenient subset of zero measure, and if
one is not in the case

(H) p even, ` = p/2, {n1, . . . , n`} = {n`+1, . . . , np}

then
|D`(n1, . . . , np)| ≥ c(n1 + · · ·+ np)−N0

for some c ,N0.

This allows to solve the equation D`(· · · )Bp(· · · ) = iImHp(· · · ),
except in the case (H). But then

ImHp(Π+
n1
U, . . . ,Π+

n`
U,Π−n`+1

U, . . . ,Π−npU; t, ξ) ≡ 0

as a consequence of the reality, parity preservation and reversibility
conditions.
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smaller than N. One proceeds as in the model case,
dividing by D`(n1, . . . , np) =

∑`
1 mκ(nj)−

∑p
`+1 mκ(nj), nj ∈ N∗

Lemma: If κ is outside a convenient subset of zero measure, and if
one is not in the case

(H) p even, ` = p/2, {n1, . . . , n`} = {n`+1, . . . , np}

then
|D`(n1, . . . , np)| ≥ c(n1 + · · ·+ np)−N0

for some c ,N0.

This allows to solve the equation D`(· · · )Bp(· · · ) = iImHp(· · · ),
except in the case (H). But then

ImHp(Π+
n1
U, . . . ,Π+

n`
U,Π−n`+1

U, . . . ,Π−npU; t, ξ) ≡ 0

as a consequence of the reality, parity preservation and reversibility
conditions.


