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1. Boutet’s transmission condition

One of the early mathematical achievements of Louis Boutet de Monvel
was to establish in 1966-71 a calculus of boundary value problems for
classical pseudodifferential operators P satisfying the so-called
transmission condition at the boundary of an open smooth subset Ω of
Rn (or of an n-dimensional manifold Ω1).

Recall some details:
Inspired from a Doklady announcement of Vishik and Eskin 1964, Boutet
introduced in J.An.Math. ’66 (submitted June ’65, CRAS note Nov. ’65):

Definition 1. A classical ψdo P of order m with symbol
p ∼

∑
j∈N0

pj(x , ξ) is said to satisfy the transmission condition at ∂Ω,
when

∂βx ∂
α
ξ pj(x ,−ν) = eπi(m−j−|α|)∂βx ∂

α
ξ pj(x , ν), (1)

for all indices; here x ∈ ∂Ω and ν denotes the interior normal at x.

Define the truncation of P to Ω as P+ = r+Pe+, where r+ denotes
restriction to Ω and e+ denotes extension by zero.

Theorem 2. The transmission condition is necessary and sufficient in
order that P+ maps C∞(Ω) into C∞(Ω) .
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In another J.An.Math. ’66 paper, Boutet introduced Poisson operators,
arising as ϕ 7→ r+P(ϕ(x ′)⊗ δ(xn)) when Ω = Rn

+, for P having the
transmission property.
The theory was elaborated further in Ann.Inst.Fourier ’69 and Acta
Math. ’71, introducing operator systems:

A =

P+ + G K

T S

 :
C∞(Ω)N

×
C∞(∂Ω)M

→
C∞(Ω)N

′

×
C∞(∂Ω)M

′
, where

K is a Poisson operator from ∂Ω to Ω,

T is a trace operator from Ω to ∂Ω,

S is a ψdo on ∂Ω,

G is a singular Green operator, e.g. of type KT , also including the
“leftover operators” L(P,Q) = (PQ)+ − P+Q+.

Along the way, more techniques were introduced, e.g. the Wiener-Hopf
calculus worked out with Laguerre-type expansions in Acta ’71,
restricting to operators P of integer order. Here ν and −ν can be
exchanged, whereby P∗ also has the transmission property.
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T and G are of class d , when they contain the first d standard traces
{γ0, . . . , γd−1}.
The mappings extend to Sobolev spaces: For A of order m, when
s + m > d − 1

2 ,

A : Hs+m(Ω)N × Hs+m− 1
2 (∂Ω)M → Hs(Ω)N

′
× Hs− 1

2 (∂Ω)M
′
.

The ψdbo calculus defines an “algebra” of operators, where the
composition of two systems leads to a third one (when the matrix
dimensions match). It allows operators of all orders, both positive and
negative. In particular, when a system is elliptic of order m, then there
exists a parametrix (an approximate inverse) of order −m, which also
belongs to the calculus.

The calculus has been used very much through the years to solve
problems, both for pseudodifferential and for differential operators (which
are a special case). It has not only provided new results, but also a
notational framework for elegant formulations when P is a differential
operator.
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2. The µ-transmission condition

Likewise inspired by Vishik and Eskin’s work, Hörmander in Princeton
prepared a course in the year 1965-66 on ψdo’s, where he introduced a
more general transmission condition (independently of Boutet’s note):

Definition 3. Let µ ∈ C. A classical ψdo of order m ∈ C is said to have
the µ-transmission property at ∂Ω (for short: to be of type µ), when for
all indices,

∂βx ∂
α
ξ pj(x ,−ν) = eπi(m−2µ−j−|α|)∂βx ∂

α
ξ pj(x , ν). (2)

Boutet’s transmission condition is the case of (2) with µ = 0 (mod Z).

When µ /∈ Z, the µ-transmission condition is necessary and sufficient for
a different property than preservation of C∞(Ω).

Definition 4. For Reµ > −1, define

Eµ(Ω) = e+(dµC∞(Ω)),

where d(x) is a smooth positive extension into Ω of dist(x , ∂Ω) near ∂Ω.
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For lower values of Reµ, define the spaces Eµ(Ω) successively so that
Eµ−1(Ω) is the linear hull of the spaces DEµ(Ω), where D varies over the
first-order differential operators with C∞-coefficients.

Hörmander showed (and included as Th. 18.2.18 in his book ’85, with a
different notation):

Theorem 5. For a classical ψdo P, the µ-transmission property at ∂Ω is
necessary and sufficient in order that

u ∈ Eµ(Ω) =⇒ r+Pu ∈ C∞(Ω). (3)

His notes also dicuss the solvability of the so-called homogeneous
Dirichlet problem for such operators in L2-Sobolev spaces:

r+Pu = f in Ω, supp u ⊂ Ω. (4)

In particular, when P in Theorem 5 is elliptic with a certain factorization
property, then (3) is a bi-implication for the solutions of (4).

Boutet received the notes from Hörmander when he visited Princeton in
1967. He cited them in the Ann.Inst.Fourier paper ’69 where he
formulated the µ-transmission idea for analytic ψdo’s, and derived the
analogue of (3) in the analytic setting. The notes are also mentioned in
his contribution to Ann.Math.Stud. 91, Princeton ’78.
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In 1980 I received the notes, but I did not read deeply into them then.

At the memorial lectures for Hörmander at the Nordic-European
Congress in Lund June 2013, both Louis and I made remarks on these
particular operators. A prominent example is the square root Laplacian
(−∆)

1
2 , a first-order ψdo. It satisfies the 1

2 -transmission property, thus

d(x)
1
2 must enter in discussions of its boundary problems.

While preparing the memorial lecture, I began to type up the notes in
TEX, to force myself to read every word. They partly have the character
of a rough sketch, with typos and omissions.

Over the summer 2013 I worked on developing the methods further, to
get results in Lp-Sobolev spaces, leading to conclusions also for Hölder
spaces. In this process, I found that my paper in CPDE ’90 on
generalizations of Boutet’s calculus to Lp-spaces and in particular on an
improved version of order-reducing operators, allowed substantial
simplifications of the arguments in the notes.

I had a good correspondence with Louis in October 2013 about these
things, where he appreciated my analysis and pointed to more references
— and asked me for a new copy of the notes that he had lost long ago.

The rest of the talk will describe the new stuff.
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3. Fractional powers

Fractional Laplacians (−∆)a on Rn, 0 < a < 1, have in recent years been
in focus in probability, finance and nonlinear PDE, but pseudodifferential
methods were not used at all, although (−∆)a is a ψdo. Instead, real
methods for singular integral operators and potential theory were used,
plus a trick of Caffarelli and Silvestre 2007 that views (−∆)a as a
Dirichlet-to-Neumann operator for a degenerate differential operator
problem in n + 1 variables.

For subsets Ω of Rn, one studies the homogeneous Dirichlet problem:

r+(−∆)au = f in Ω, supp u ⊂ Ω.

By a variational construction, there is unique solvability for f ∈ L2(Ω),
with u ∈ Ḣa(Ω) (functions in Ha(Rn) supported in Ω).

Not much was known concerning higher regularity of u. There were early
results by Vishik, Eskin, Shamir in the 1960’s, namely: u ∈ Ḣ2a(Ω) when

a < 1
2 , and u ∈ Ḣa+ 1

2−ε(Ω) when a ≥ 1
2 .

Recent results had been shown by Ros-Oton and Serra (JMPA ’14):
f ∈ L∞ implies u ∈ d(x)aC s(Ω), small s.
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From the pseudodifferential point of view, (−∆)a is a classical ψdo of
order 2a with even symbol:

p ∼
∑

j∈N0

pj(x , ξ), pj(x ,−ξ) = (−1)jpj(x , ξ).

Such operators have the a-transmission property at a smooth ∂Ω, and
Theorem 5 applies. We need some notation for other function spaces:

1) The Sobolev spaces (Bessel-potential spaces) are defined for

1 < p <∞ (with 〈ξ〉 = (|ξ|2 + 1)
1
2 , 1/p′ = 1− 1/p) by:

Hs
p(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉s û) ∈ Lp(Rn)},

H
s

p(Ω) = r+Hs
p(Rn),

Ḣs
p(Ω) = {u ∈ Hs

p(Rn) | supp u ⊂ Ω}.

H
s

p(Ω) and Ḣ−sp′ (Ω) are dual spaces. (The notation H, Ḣ stems from
Hörmander’s works.) When p = 2, omit p.
2) The Hölder spaces C k,σ(Ω) where k ∈ N0, 0 < σ ≤ 1, are also denoted
C s(Ω) with s = k + σ when σ < 1. For s ∈ N0, C s(Ω) is the usual space
of continuously differentiable functions. Hölder-Zygmund-spaces C s

∗(Ω)
generalize C s(Ω) (s ∈ R+ \ N) to all s ∈ R with good interpolation
properties. (The spaces C s

∗ are also known as the Besov spaces Bs
∞,∞.)

Also here the notation C and Ċ can be used.
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An important idea in Hörmander’s ’65 notes was to introduce the
a-transmission spaces (in the case p = 2 by a difficult definition).
Note that

(−∆ + 1)a = Op((〈ξ′〉2 + ξ2
n)a) = Op((〈ξ′〉 − iξn)a) Op((〈ξ′〉+ iξn)a).

Denote Ξt
± = Op((〈ξ′〉 ± iξn)t) on Rn. Here Ξt

+ preserves support in Rn

+,

and Ξt
− preserves support in Rn

−, where Rn
± = {x ∈ Rn | xn ≷ 0}.

Then for all s ∈ R,

Ξt
+ : Ḣs

p(Rn

+)
∼→ Ḣs−t

p (Rn

+), r+Ξt
−e

+ : H
s

p(Rn
+)
∼→ H

s−t
p (Rn

+).

In fact, Ξt
+ and r+Ξt

−e
+ are adjoints. The inverses are Ξ−t+ resp.

r+Ξ−t− e+. Now define the a-transmission spaces:

Ha(s)
p (Rn

+) = Ξ−a+ e+H
s−a
p (Rn

+), for s − a > −1/p′.

Here e+H
s−a
p (Rn

+) generally has a jump at xn = 0; it is mapped by Ξ−a+

to a singularity of the type xan . In fact, we can show:

Ha(s)
p (Rn

+)

{
= Ḣs

p(Rn

+) if − 1/p′ < s − a < 1/p,

⊂ e+xanH
s−a
p (Rn

+) + Ḣs
p(Rn

+) if s − a > 1/p,

with Ḣs
p(Rn

+) replaced by Ḣs−ε
p (Rn

+) if s − a− 1/p ∈ N.
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The Ξt
± do not have all the symbol estimates required for ψdo’s. But it

is possible to find modifications that are true ψdo’s with the needed
support preserving properties, and they can be extended to the curved

situation (G CPDE ’90). These are families of ψdo’s Λ
(t)
± of order t with

the properties, for all s:

Λ
(t)
+ : Ḣs

p(Ω)
∼→ Ḣs−t

p (Ω),

r+Λ
(t)
− e+ : H

s

p(Ω)
∼→ H

s−t
p (Ω),

with inverses Λ
(−t)
+ resp. r+Λ

(−t)
− e+, and Λ

(t)
− , Λ

(t)
+ being adjoints.

For Ω, the role of xn is taken over by d(x). Then we define (consistently)

Ha(s)
p (Ω) = Λ

(−a)
+ e+H

s−a
p (Ω)

{
= Ḣs

p(Ω) if − 1/p′ < s − a < 1/p,

⊂ e+daH
s−a
p (Ω) + Ḣ

s (−ε)
p (Ω) if s − a > 1/p.

Here Ea(Ω) ⊂ H
a(s)
p (Ω) densely for all s, and

⋂
s H

a(s)
p (Ω) = Ea(Ω).

The operators Λ
(t)
+ have the t-transmission property, and the operators

Λ
(t)
− have the 0-transmission property,
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Consider P, classical of order 2a and even, hence having the
a-transmission property. The idea is now to introduce

Q = Λ
(−a)
− PΛ

(−a)
+ ;

it is of order 0 with 0-transmission property relative to Ω, hence belongs
to the Boutet de Monvel calculus!

When P moreover is elliptic avoiding a ray (e.g., strongly elliptic), one
can show that the principal symbol q0 of Q has a factorization at ∂Ω into
two bounded factors, in local coordinates:

q0(x ′, ξ′, ξn) = q−0 (x ′, ξ′, ξn)q+
0 (x ′, ξ′, ξn),

where Op(q±0 ) preserve support in Rn

±.
This can be used to show that the truncation Q+ = r+Qe+ defines a
Fredholm operator

Q+ : H
s

p(Ω)
∼→ H

s

p(Ω), all s > −1/p′.

Arguing carefully with the operators Λ
(a)
± , r± and e±, one then finds:
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Theorem 6. Let P be a classical ψdo of order 2a with even symbol,
elliptic avoiding a ray. Let s > a− 1/p′. The homogeneous Dirichlet
problem

r+Pu = f , supp u ⊂ Ω,

considered for u ∈ Ḣ
a−1/p′+ε
p (Ω), satifies:

f ∈ H
s−2a

p (Ω) =⇒ u ∈ Ha(s)
p (Ω), the a-transmission space.

Moreover, the mapping from u to f is Fredholm:

r+P : Ha(s)
p (Ω)→ H

s−2a

p (Ω).

There is a similar result with Hs
p-spaces replaced by Triebel-Lizorkin

scales F s
p,q and Besov scales Bs

p,q; in particular the Hölder-Zygmund scale
C s
∗ . E.g., for s > a,

f ∈ C s−2a
∗ (Ω) =⇒ u ∈ C

a(s)
∗ (Ω) ⊂ e+daC s−a

∗ (Ω) + Ċ s
∗(Ω)

(with Ċ s
∗(Ω) replaced by Ċ s−ε

∗ (Ω) if s − a ∈ N). Improves Ros-Oton and
Serra’s 2014 result in an optimal way, for smooth sets Ω.
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4. Nonhomogeneous boundary conditions

Up to now we have studied the so-called homogeneous Dirichlet problem.

Question: Is there a nontrivial “Dirichlet boundary value” on ∂Ω, such
that the problem represents the case where that value is zero?

To give a simple explanation, consider the C∞-situation. Recall that

Ea(Ω) = e+(daC∞(Ω)),

dense in H
a(s)
p (Ω).

In local coordinates where Ω is replaced by Rn
+, d(x) is the coordinate

xn. When u ∈ Ea(Ω) and we write u = dav with v ∈ e+C∞(Ω), a Taylor
expansion of v gives for xn > 0, d = xn,

u(x) = da[v(x ′, 0) + d∂nv(x ′, 0) + 1
2d

2∂2
nv(x ′, 0) + . . . ]

= daγ0( u
da ) + da+1γ1( u

da ) + 1
2d

a+2γ2( u
da ) + . . . . (5)

Note furthermore that if u ∈ Ea−1(Ω), then analogously

u = da−1γ0( u
da−1 ) + daγ1( u

da−1 ) + 1
2d

a+1γ2( u
da−1 ) + . . . , (6)

an expansion of the type (5) except for the term with coefficient da−1.
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So Ea−1(Ω) contains Ea(Ω), differing just by having a nonvanishing term
da−1ϕ in the start. We conclude:

Lemma 7. Ea(Ω) is the subset of Ea−1(Ω) for which γ0( u
da−1 ) vanishes.

This extends by density to the a-transmission spaces. There are
continuous maps

γa,j : u 7→ γj(
u
da ) from Ha(s)

p (Ω) to Bs−a−j−1/p
p (∂Ω),

when s > a + j + 1/p, and there holds:

Lemma 8. H
a(s)
p (Ω) is the subset of H

(a−1)(s)
p (Ω) for which γ0( u

da−1 )
vanishes.

The value γ0( u
da−1 ) is the generalized Dirichlet boundary value!

And we can show:

Theorem 9. The nonhomogeneous Dirichlet problem with u sought in

H
(a−1)(s)
p (Ω), 

r+Pu = f on Ω,

supp u ⊂ Ω,

γ0( u
da−1 ) = ϕ on ∂Ω,

is Fredholm solvable for s > a− 1 + 1/p with data f ∈ H
s−2a

p (Ω),

ϕ ∈ B
s−a+1−1/p
p (∂Ω).
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Note here that when u is such that γ0( u
da−1 ) = ϕ 6= 0 at x0 ∈ ∂Ω, then

u(x) blows up like da−1 when x → x0. The solutions with nonzero
Dirichlet data are “large” in this sense (also observed by Abatangelo ’15).

We can also study Neumann problems on H(a−1)(s)(Ω):
r+Pu = f on Ω,

supp u ⊂ Ω,

γ1( u
da−1 ) = ψ on ∂Ω,

with f ∈ H
s−2a

p (Ω), ψ ∈ B
s−a−1/p
p (∂Ω).

There is Fredholm solvability at least when P is principally like (−∆)a.
(G in A&PDE ’14)

One can check that when u is in the smaller space Ha(s)(Ω) (i.e., when
the Dirichlet value γ0( u

da−1 ) vanishes), then the Neumann value γ1( u
da−1 )

equals γ0( u
da ).

The above boundary conditions are local. There exist other well-posed
boundary conditions for (−∆)a, of interest in probability theory, that are
nonlocal.
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5. Integration by parts

Finally, just a few words on integration by parts. When u is in the
Dirichlet domain Ha(s)(Ω), then as noted, γ0( u

da ) plays the role of a
Neumann boundary value. We can show (G JDE’16):

Theorem 10. Let P be a classical ψdo of order 2a (0 < a < 1) with
even symbol, elliptic avoiding a ray. Then for u, u′ ∈ Ha(s)(Ω), s > a + 1

2 ,∫
Ω

Pu ∂j ū
′ dx +

∫
Ω

∂ju P∗u′ dx ,

= Γ(a + 1)2

∫
∂Ω

s0(x)νj(x)γ0( u
da )γ0( ū′

da ) dσ +

∫
Ω

[P, ∂j ]u ū
′ dx ,

where [P, ∂j ] is the commutator P∂j − ∂jP. Here νj is the j’th
component of the normal vector ν, and s0(x) = p0(x , ν(x)).

It was shown first for P = (−∆)a by Ros-Oton and Serra ARMA ’14,
then in a joint work with Valdinoci ’16 for translation-invariant selfadjoint
positive homogeneous P, by integral operator methods. The new thing
here is to allow variable coefficients, nonselfadjointness, lower-order
terms, by ψdo methods — in particular finding the new term with [P, ∂j ].

Such formulas are useful for nonexistence proofs in nonlinear problems.
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There is a corollary with ∂j replaced by a radial derivative x · ∇, and of
course other integral terms. As a corollary of this, we can show a
Pohozaev-type formula for semilinear problems:
Consider the nonlinear Dirichlet problem

r+Pu = f (u), supp u ⊂ Ω, (7)

where f (s) ∈ C 0,1(R). Let F (t) =
∫ t

0
f (s) ds.

Corollary 11. Let P be selfadjoint. Any bounded real solution u of (7)
satisfies the Pohozaev formula:

−2n

∫
Ω

F (u) dx + n

∫
Ω

f (u) u dx

= Γ(1 + a)2

∫
∂Ω

(x · ν) s0γ0( u
da )2 dσ +

∫
Ω

[P, x · ∇]u u dx .

If P is x-independent, the last term is replaced by
∫

Ω
Op(ξ · ∇ξp)u u dx.

Example. Applied to P = (−∆ + m2)a with f (u) = sign u|u|r , this
implies that on sharshaped domains, there are no nontrivial solutions in
the critical and supercritical cases, where r ≥ n+2a

n−2a . This follows from a
sign analysis of the entering terms.
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Details, if there is time: When p(ξ) = (|ξ|2 + m2)a,

ξ · ∇p(ξ) = 2a|ξ|2(|ξ|2 + m2)a−1 = 2a(|ξ|2 + m2)a − 2am2(|ξ|2 + m2)a−1,

so Op(ξ · ∇p(ξ)) = 2aP − P1, where P1 = 2am2(−∆ + m2)a−1 is a
positive operator. The Pohozaev identity is then

−2n

∫
Ω

F (u) dx + (n − 2a)

∫
Ω

f (u) u dx +

∫
Ω

P1u u dx

= Γ(1 + a)2

∫
∂Ω

(x · ν) s0γ0( u
da )2 dσ.

When f (u) = sign u |u|r with an r > 1, F (u) = 1
r+1 |u|

r+1, giving the
formula

−2n+(n−2a)(r+1)
r+1

∫
Ω

|u|r+1 dx+

∫
Ω

P1u u dx = Γ(1+a)2

∫
∂Ω

(x ·ν) s0γ0( u
da )2 dσ.

When r ≥ n+2a
n−2a , the left-hand side is positive unless u ≡ 0. For

star-shaped Ω, the right-hand side is ≤ 0. In such cases there are no
nontrivial solutions.
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