The transmission property

Gerd Grubb
Copenhagen University

Boutet Memorial Conference
École Normale Supérieure, Paris
20-24 juin, 2016

1. Boutet's transmission condition

One of the early mathematical achievements of Louis Boutet de Monvel was to establish in 1966-71 a calculus of boundary value problems for classical pseudodifferential operators P satisfying the so-called transmission condition at the boundary of an open smooth subset Ω of \mathbb{R}^{n} (or of an n-dimensional manifold Ω_{1}).
Recall some details:
Inspired from a Doklady announcement of Vishik and Eskin 1964, Boutet introduced in J.An.Math. '66 (submitted June '65, CRAS note Nov. '65):
Definition 1. A classical $\psi d o \quad P$ of order m with symbol $p \sim \sum_{j \in \mathbb{N}_{0}} p_{j}(x, \xi)$ is said to satisfy the transmission condition at $\partial \Omega$, when

$$
\begin{equation*}
\partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x,-\nu)=e^{\pi i(m-j-|\alpha|)} \partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x, \nu), \tag{1}
\end{equation*}
$$

for all indices; here $x \in \partial \Omega$ and ν denotes the interior normal at x.
Define the truncation of P to Ω as $P_{+}=r^{+} P e^{+}$, where r^{+}denotes restriction to Ω and e^{+}denotes extension by zero.

Theorem 2. The transmission condition is necessary and sufficient in order that P_{+}maps $C^{\infty}(\bar{\Omega})$ into $C^{\infty}(\bar{\Omega})$.

In another J.An.Math. '66 paper, Boutet introduced Poisson operators, arising as $\varphi \mapsto r^{+} P\left(\varphi\left(x^{\prime}\right) \otimes \delta\left(x_{n}\right)\right)$ when $\Omega=\mathbb{R}_{+}^{n}$, for P having the transmission property.
The theory was elaborated further in Ann.Inst.Fourier '69 and Acta Math. '71, introducing operator systems:

$$
\mathcal{A}=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}(\bar{\Omega})^{N} \\
\times \\
C^{\infty}(\partial \Omega)^{M}
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}(\bar{\Omega})^{N^{\prime}} \\
\times \\
C^{\infty}(\partial \Omega)^{M^{\prime}}
\end{gathered}, \text { where }
$$

- K is a Poisson operator from $\partial \Omega$ to Ω,
- T is a trace operator from Ω to $\partial \Omega$,
- S is a ψ do on $\partial \Omega$,
- G is a singular Green operator, e.g. of type $K T$, also including the "leftover operators" $L(P, Q)=(P Q)_{+}-P_{+} Q_{+}$.

Along the way, more techniques were introduced, e.g. the Wiener-Hopf calculus worked out with Laguerre-type expansions in Acta '71, restricting to operators P of integer order. Here ν and $-\nu$ can be exchanged, whereby P^{*} also has the transmission property.
T and G are of class d, when they contain the first d standard traces $\left\{\gamma_{0}, \ldots, \gamma_{d-1}\right\}$.
The mappings extend to Sobolev spaces: For \mathcal{A} of order m, when $s+m>d-\frac{1}{2}$,

$$
\mathcal{A}: H^{s+m}(\Omega)^{N} \times H^{s+m-\frac{1}{2}}(\partial \Omega)^{M} \rightarrow H^{s}(\Omega)^{N^{\prime}} \times H^{s-\frac{1}{2}}(\partial \Omega)^{M^{\prime}} .
$$

The ψ dbo calculus defines an "algebra" of operators, where the composition of two systems leads to a third one (when the matrix dimensions match). It allows operators of all orders, both positive and negative. In particular, when a system is elliptic of order m, then there exists a parametrix (an approximate inverse) of order $-m$, which also belongs to the calculus.
The calculus has been used very much through the years to solve problems, both for pseudodifferential and for differential operators (which are a special case). It has not only provided new results, but also a notational framework for elegant formulations when P is a differential operator.

Likewise inspired by Vishik and Eskin's work, Hörmander in Princeton prepared a course in the year 1965-66 on ψ do's, where he introduced a more general transmission condition (independently of Boutet's note):
Definition 3. Let $\mu \in \mathbb{C}$. A classical ψ do of order $m \in \mathbb{C}$ is said to have the μ-transmission property at $\partial \Omega$ (for short: to be of type μ), when for all indices,

$$
\begin{equation*}
\partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x,-\nu)=e^{\pi i(m-2 \mu-j-|\alpha|)} \partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x, \nu) . \tag{2}
\end{equation*}
$$

Boutet's transmission condition is the case of (2) with $\mu=0(\bmod \mathbb{Z})$.
When $\mu \notin \mathbb{Z}$, the μ-transmission condition is necessary and sufficient for a different property than preservation of $C^{\infty}(\bar{\Omega})$.
Definition 4. For $\operatorname{Re} \mu>-1$, define

$$
\mathcal{E}_{\mu}(\bar{\Omega})=e^{+}\left(d^{\mu} C^{\infty}(\bar{\Omega})\right),
$$

where $d(x)$ is a smooth positive extension into Ω of $\operatorname{dist}(x, \partial \Omega)$ near $\partial \Omega$.

For lower values of $\operatorname{Re} \mu$, define the spaces $\mathcal{E}_{\mu}(\bar{\Omega})$ successively so that $\mathcal{E}_{\mu-1}(\bar{\Omega})$ is the linear hull of the spaces $D \mathcal{E}_{\mu}(\bar{\Omega})$, where D varies over the first-order differential operators with C^{∞}-coefficients.

Hörmander showed (and included as Th. 18.2.18 in his book '85, with a different notation):
Theorem 5. For a classical ψd do P, the μ-transmission property at $\partial \Omega$ is necessary and sufficient in order that

$$
\begin{equation*}
u \in \mathcal{E}_{\mu}(\bar{\Omega}) \Longrightarrow r^{+} P u \in C^{\infty}(\bar{\Omega}) . \tag{3}
\end{equation*}
$$

His notes also dicuss the solvability of the so-called homogeneous Dirichlet problem for such operators in L_{2}-Sobolev spaces:

$$
\begin{equation*}
r^{+} P u=f \text { in } \Omega, \quad \text { supp } u \subset \bar{\Omega} . \tag{4}
\end{equation*}
$$

In particular, when P in Theorem 5 is elliptic with a certain factorization property, then (3) is a bi-implication for the solutions of (4).
Boutet received the notes from Hörmander when he visited Princeton in 1967. He cited them in the Ann.Inst.Fourier paper '69 where he formulated the μ-transmission idea for analytic ψ do's, and derived the analogue of (3) in the analytic setting. The notes are also mentioned in his contribution to Ann.Math.Stud. 91, Princeton '78.

In 1980 I received the notes, but I did not read deeply into them then. At the memorial lectures for Hörmander at the Nordic-European Congress in Lund June 2013, both Louis and I made remarks on these particular operators. A prominent example is the square root Laplacian $(-\Delta)^{\frac{1}{2}}$, a first-order ψ do. It satisfies the $\frac{1}{2}$-transmission property, thus $d(x)^{\frac{1}{2}}$ must enter in discussions of its boundary problems.
While preparing the memorial lecture, I began to type up the notes in $T_{E} \mathrm{X}$, to force myself to read every word. They partly have the character of a rough sketch, with typos and omissions.
Over the summer 2013 I worked on developing the methods further, to get results in L_{p}-Sobolev spaces, leading to conclusions also for Hölder spaces. In this process, I found that my paper in CPDE ' 90 on generalizations of Boutet's calculus to L_{p}-spaces and in particular on an improved version of order-reducing operators, allowed substantial simplifications of the arguments in the notes.
I had a good correspondence with Louis in October 2013 about these things, where he appreciated my analysis and pointed to more references - and asked me for a new copy of the notes that he had lost long ago.

The rest of the talk will describe the new stuff.

Fractional Laplacians $(-\Delta)^{a}$ on $\mathbb{R}^{n}, 0<a<1$, have in recent years been in focus in probability, finance and nonlinear PDE, but pseudodifferential methods were not used at all, although $(-\Delta)^{a}$ is a ψ do. Instead, real methods for singular integral operators and potential theory were used, plus a trick of Caffarelli and Silvestre 2007 that views $(-\Delta)^{a}$ as a Dirichlet-to-Neumann operator for a degenerate differential operator problem in $n+1$ variables.
For subsets Ω of \mathbb{R}^{n}, one studies the homogeneous Dirichlet problem:

$$
r^{+}(-\Delta)^{a} u=f \text { in } \Omega, \quad \operatorname{supp} u \subset \bar{\Omega}
$$

By a variational construction, there is unique solvability for $f \in L_{2}(\Omega)$, with $u \in \dot{H}^{a}(\bar{\Omega})$ (functions in $H^{a}\left(\mathbb{R}^{n}\right)$ supported in $\bar{\Omega}$).
Not much was known concerning higher regularity of u. There were early results by Vishik, Eskin, Shamir in the 1960's, namely: $u \in \dot{H}^{2 a}(\bar{\Omega})$ when $a<\frac{1}{2}$, and $u \in \dot{H}^{a+\frac{1}{2}-\varepsilon}(\bar{\Omega})$ when $a \geq \frac{1}{2}$.
Recent results had been shown by Ros-Oton and Serra (JMPA '14): $f \in L_{\infty}$ implies $u \in d(x)^{a} C^{s}(\bar{\Omega})$, small s.

From the pseudodifferential point of view, $(-\Delta)^{a}$ is a classical ψ do of order $2 a$ with even symbol:

$$
p \sim \sum_{j \in \mathbb{N}_{0}} p_{j}(x, \xi), \quad p_{j}(x,-\xi)=(-1)^{j} p_{j}(x, \xi) .
$$

Such operators have the a-transmission property at a smooth $\partial \Omega$, and Theorem 5 applies. We need some notation for other function spaces:

1) The Sobolev spaces (Bessel-potential spaces) are defined for $1<p<\infty\left(\right.$ with $\left.\langle\xi\rangle=\left(|\xi|^{2}+1\right)^{\frac{1}{2}}, 1 / p^{\prime}=1-1 / p\right)$ by:

$$
\begin{aligned}
H_{p}^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid \mathcal{F}^{-1}\left(\langle\xi\rangle^{s} \hat{u}\right) \in L_{p}\left(\mathbb{R}^{n}\right)\right\}, \\
\bar{H}_{p}^{s}(\Omega) & =r^{+} H_{p}^{s}\left(\mathbb{R}^{n}\right), \\
\dot{H}_{p}^{s}(\bar{\Omega}) & =\left\{u \in H_{p}^{s}\left(\mathbb{R}^{n}\right) \mid \operatorname{supp} u \subset \bar{\Omega}\right\} .
\end{aligned}
$$

$\bar{H}_{p}^{s}(\Omega)$ and $\dot{H}_{p^{\prime}}^{-s}(\bar{\Omega})$ are dual spaces. (The notation \bar{H}, \dot{H} stems from Hörmander's works.) When $p=2$, omit p.
2) The Hölder spaces $C^{k, \sigma}(\bar{\Omega})$ where $k \in \mathbb{N}_{0}, 0<\sigma \leqq 1$, are also denoted $C^{s}(\bar{\Omega})$ with $s=k+\sigma$ when $\sigma<1$. For $s \in \mathbb{N}_{0}, C^{s}(\bar{\Omega})$ is the usual space of continuously differentiable functions. Hölder-Zygmund-spaces $C_{*}^{s}(\bar{\Omega})$ generalize $C^{s}(\Omega)\left(s \in \mathbb{R}_{+} \backslash \mathbb{N}\right)$ to all $s \in \mathbb{R}$ with good interpolation properties. (The spaces C_{*}^{s} are also known as the Besov spaces $B_{\infty, \infty}^{s}$.) Also here the notation \bar{C} and \dot{C} can be used.

An important idea in Hörmander's ' 65 notes was to introduce the a-transmission spaces (in the case $p=2$ by a difficult definition). Note that

$$
(-\Delta+1)^{a}=\operatorname{Op}\left(\left(\left\langle\xi^{\prime}\right\rangle^{2}+\xi_{n}^{2}\right)^{a}\right)=\operatorname{Op}\left(\left(\left\langle\xi^{\prime}\right\rangle-i \xi_{n}\right)^{a}\right) \operatorname{Op}\left(\left(\left\langle\xi^{\prime}\right\rangle+i \xi_{n}\right)^{a}\right)
$$

Denote $\bar{\Xi}_{ \pm}^{t}=\operatorname{Op}\left(\left(\left\langle\xi^{\prime}\right\rangle \pm i \xi_{n}\right)^{t}\right)$ on \mathbb{R}^{n}. Here $\bar{\Xi}_{+}^{t}$ preserves support in $\overline{\mathbb{R}}_{+}^{n}$, and Ξ_{-}^{t} preserves support in $\overline{\mathbb{R}}_{-}^{n}$, where $\mathbb{R}_{ \pm}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{n} \gtrless 0\right\}$. Then for all $s \in \mathbb{R}$,

$$
\bar{\Xi}_{+}^{t}: \dot{H}_{p}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right) \xrightarrow[\rightarrow]{\sim} \dot{H}_{p}^{s-t}\left(\overline{\mathbb{R}}_{+}^{n}\right), \quad r^{+} \bar{\Xi}_{-}^{t} e^{+}: \bar{H}_{p}^{s}\left(\mathbb{R}_{+}^{n}\right) \xrightarrow{\sim} \bar{H}_{p}^{s-t}\left(\mathbb{R}_{+}^{n}\right) .
$$

In fact, Ξ_{+}^{t} and $r^{+} \bar{\Xi}_{-}^{t} e^{+}$are adjoints. The inverses are $\bar{\Xi}_{+}^{-t}$ resp. $r^{+} \Xi_{-}^{-t} e^{+}$. Now define the a-transmission spaces:

$$
H_{p}^{a(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right)=\bar{\Xi}_{+}^{-a} e^{+} \bar{H}_{p}^{s-a}\left(\mathbb{R}_{+}^{n}\right), \text { for } s-a>-1 / p^{\prime} .
$$

Here $e^{+} \bar{H}_{p}^{s-a}\left(\mathbb{R}_{+}^{n}\right)$ generally has a jump at $x_{n}=0$; it is mapped by Ξ_{+}^{-a} to a singularity of the type x_{n}^{a}. In fact, we can show:

$$
H_{p}^{a(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right)\left\{\begin{array}{l}
=\dot{H}_{p}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { if }-1 / p^{\prime}<s-a<1 / p \\
\subset e^{+} x_{n}^{a} \bar{H}_{p}^{s-a}\left(\mathbb{R}_{+}^{n}\right)+\dot{H}_{p}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { if } s-a>1 / p
\end{array}\right.
$$

with $\dot{H}_{p}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ replaced by $\dot{H}_{p}^{s-\varepsilon}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ if $s-a-1 / p \in \mathbb{N}$.

The $\equiv_{ \pm}^{t}$ do not have all the symbol estimates required for ψ do's. But it is possible to find modifications that are true ψ do's with the needed support preserving properties, and they can be extended to the curved situation (G CPDE '90). These are families of $\psi \mathrm{do}$'s $\Lambda_{ \pm}^{(t)}$ of order t with the properties, for all s :

$$
\begin{aligned}
& \Lambda_{+}^{(t)}: \dot{H}_{p}^{s}(\bar{\Omega}) \sim \\
& r^{+} \Lambda_{-}^{(t)} e^{s-t}(\bar{\Omega}) \\
& H_{p}^{s}(\Omega) \xrightarrow{\rightarrow} \bar{H}_{p}^{s-t}(\Omega),
\end{aligned}
$$

with inverses $\Lambda_{+}^{(-t)}$ resp. $r^{+} \Lambda_{-}^{(-t)} e^{+}$, and $\Lambda_{-}^{(t)}, \Lambda_{+}^{(t)}$ being adjoints.
For $\bar{\Omega}$, the role of x_{n} is taken over by $d(x)$. Then we define (consistently)
$H_{p}^{a(s)}(\bar{\Omega})=\Lambda_{+}^{(-a)} e^{+} \bar{H}_{p}^{s-a}(\Omega)\left\{\begin{array}{l}=\dot{H}_{p}^{s}(\bar{\Omega}) \text { if }-1 / p^{\prime}<s-a<1 / p, \\ \subset e^{+} d^{a} H_{p}^{s-a}(\Omega)+\dot{H}_{p}^{s(-\varepsilon)}(\bar{\Omega}) \text { if } s-a>1 / p .\end{array}\right.$
Here $\mathcal{E}_{a}(\bar{\Omega}) \subset H_{p}^{a(s)}(\bar{\Omega})$ densely for all s, and $\bigcap_{s} H_{p}^{a(s)}(\bar{\Omega})=\mathcal{E}_{a}(\bar{\Omega})$.
The operators $\Lambda_{+}^{(t)}$ have the t-transmission property, and the operators $\Lambda_{-}^{(t)}$ have the 0 -transmission property,

Consider P, classical of order 2a and even, hence having the a-transmission property. The idea is now to introduce

$$
Q=\Lambda_{-}^{(-a)} P \Lambda_{+}^{(-a)}
$$

it is of order 0 with 0 -transmission property relative to Ω, hence belongs to the Boutet de Monvel calculus!

When P moreover is elliptic avoiding a ray (e.g., strongly elliptic), one can show that the principal symbol q_{0} of Q has a factorization at $\partial \Omega$ into two bounded factors, in local coordinates:

$$
q_{0}\left(x^{\prime}, \xi^{\prime}, \xi_{n}\right)=q_{0}^{-}\left(x^{\prime}, \xi^{\prime}, \xi_{n}\right) q_{0}^{+}\left(x^{\prime}, \xi^{\prime}, \xi_{n}\right),
$$

where $O p\left(q_{0}^{ \pm}\right)$preserve support in $\overline{\mathbb{R}}_{ \pm}^{n}$.
This can be used to show that the truncation $Q_{+}=r^{+} Q e^{+}$defines a Fredholm operator

$$
Q_{+}: \bar{H}_{p}^{s}(\Omega) \xrightarrow{\sim} \bar{H}_{p}^{s}(\Omega), \text { all } s>-1 / p^{\prime} .
$$

Arguing carefully with the operators $\Lambda_{ \pm}^{(a)}, r^{ \pm}$and $e^{ \pm}$, one then finds:

Theorem 6. Let P be a classical ψ do of order 2 a with even symbol, elliptic avoiding a ray. Let $s>a-1 / p^{\prime}$. The homogeneous Dirichlet problem

$$
r^{+} P u=f, \quad \text { supp } u \subset \bar{\Omega},
$$

considered for $u \in \dot{H}_{p}^{a-1 / p^{\prime}+\varepsilon}(\bar{\Omega})$, satifies:

$$
f \in \bar{H}_{p}^{s-2 a}(\Omega) \Longrightarrow u \in H_{p}^{a(s)}(\bar{\Omega}) \text {, the a-transmission space. }
$$

Moreover, the mapping from u to f is Fredholm:

$$
r^{+} P: H_{p}^{a(s)}(\bar{\Omega}) \rightarrow \bar{H}_{p}^{s-2 a}(\Omega) .
$$

There is a similar result with H_{p}^{s}-spaces replaced by Triebel-Lizorkin scales $F_{p, q}^{s}$ and Besov scales $B_{p, q}^{s}$; in particular the Hölder-Zygmund scale C_{*}^{s}. E.g., for $s>a$,

$$
f \in C_{*}^{s-2 a}(\bar{\Omega}) \Longrightarrow u \in C_{*}^{a(s)}(\bar{\Omega}) \subset e^{+} d^{a} C_{*}^{s-a}(\bar{\Omega})+\dot{C}_{*}^{s}(\bar{\Omega})
$$

(with $\dot{C}_{*}^{s}(\bar{\Omega})$ replaced by $\dot{C}_{*}^{s-\varepsilon}(\bar{\Omega})$ if $s-a \in \mathbb{N}$). Improves Ros-Oton and Serra's 2014 result in an optimal way, for smooth sets Ω.

4. Nonhomogeneous boundary conditions

Up to now we have studied the so-called homogeneous Dirichlet problem.
Question: Is there a nontrivial "Dirichlet boundary value" on $\partial \Omega$, such that the problem represents the case where that value is zero?
To give a simple explanation, consider the C^{∞}-situation. Recall that

$$
\mathcal{E}_{a}(\bar{\Omega})=e^{+}\left(d^{a} C^{\infty}(\bar{\Omega})\right),
$$

dense in $H_{p}^{a(s)}(\bar{\Omega})$.
In local coordinates where Ω is replaced by $\mathbb{R}_{+}^{n}, d(x)$ is the coordinate x_{n}. When $u \in \mathcal{E}_{a}(\bar{\Omega})$ and we write $u=d^{a} v$ with $v \in e^{+} C^{\infty}(\bar{\Omega})$, a Taylor expansion of v gives for $x_{n}>0, d=x_{n}$,

$$
\begin{align*}
u(x) & =d^{a}\left[v\left(x^{\prime}, 0\right)+d \partial_{n} v\left(x^{\prime}, 0\right)+\frac{1}{2} d^{2} \partial_{n}^{2} v\left(x^{\prime}, 0\right)+\ldots\right] \\
& =d^{a} \gamma_{0}\left(\frac{u}{d^{a}}\right)+d^{a+1} \gamma_{1}\left(\frac{u}{d^{a}}\right)+\frac{1}{2} d^{a+2} \gamma_{2}\left(\frac{u}{d^{a}}\right)+\ldots . \tag{5}
\end{align*}
$$

Note furthermore that if $u \in \mathcal{E}_{a-1}(\bar{\Omega})$, then analogously

$$
\begin{equation*}
u=d^{a-1} \gamma_{0}\left(\frac{u}{d^{a-1}}\right)+d^{a} \gamma_{1}\left(\frac{u}{d^{a-1}}\right)+\frac{1}{2} d^{a+1} \gamma_{2}\left(\frac{u}{d^{a-1}}\right)+\ldots, \tag{6}
\end{equation*}
$$

an expansion of the type (5) except for the term with coefficient $d_{\underline{\underline{x}}}{ }^{-1}$.

So $\mathcal{E}_{a-1}(\bar{\Omega})$ contains $\mathcal{E}_{a}(\bar{\Omega})$, differing just by having a nonvanishing term $d^{a-1} \varphi$ in the start. We conclude:
Lemma 7. $\mathcal{E}_{a}(\bar{\Omega})$ is the subset of $\mathcal{E}_{a-1}(\bar{\Omega})$ for which $\gamma_{0}\left(\frac{u}{d^{a-1}}\right)$ vanishes.
This extends by density to the a-transmission spaces. There are continuous maps

$$
\gamma_{a, j}: u \mapsto \gamma_{j}\left(\frac{u}{d^{a}}\right) \text { from } H_{p}^{a(s)}(\bar{\Omega}) \text { to } B_{p}^{s-a-j-1 / p}(\partial \Omega),
$$

when $s>a+j+1 / p$, and there holds:
Lemma 8. $H_{p}^{a(s)}(\bar{\Omega})$ is the subset of $H_{p}^{(a-1)(s)}(\bar{\Omega})$ for which $\gamma_{0}\left(\frac{u}{d^{a-1}}\right)$ vanishes.
The value $\gamma_{0}\left(\frac{u}{d^{a-1}}\right)$ is the generalized Dirichlet boundary value! And we can show:
Theorem 9. The nonhomogeneous Dirichlet problem with u sought in $H_{p}^{(a-1)(s)}(\bar{\Omega})$,

$$
\left\{\begin{array}{l}
r^{+} P u=f \text { on } \Omega, \\
\operatorname{supp} u \subset \bar{\Omega}, \\
\gamma_{0}\left(\frac{u}{d^{a-1}}\right)=\varphi \text { on } \partial \Omega,
\end{array}\right.
$$

is Fredholm solvable for $s>a-1+1 / p$ with data $f \in \bar{H}_{p}^{s-2 a}(\Omega)$, $\varphi \in B_{p}^{s-a+1-1 / p}(\partial \Omega)$.

Note here that when u is such that $\gamma_{0}\left(\frac{u}{\frac{d}{}^{d^{-1}}}\right)=\varphi \neq 0$ at $x_{0} \in \partial \Omega$, then $u(x)$ blows up like d^{a-1} when $x \rightarrow x_{0}$. The solutions with nonzero Dirichlet data are "large" in this sense (also observed by Abatangelo '15). We can also study Neumann problems on $H^{(a-1)(s)}(\bar{\Omega})$:

$$
\left\{\begin{array}{l}
r^{+} P u=f \text { on } \Omega, \\
\operatorname{supp} u \subset \bar{\Omega}, \\
\gamma_{1}\left(\frac{u}{d^{-1}-1}\right)=\psi \text { on } \partial \Omega,
\end{array}\right.
$$

with $f \in \bar{H}_{p}^{s-2 a}(\Omega), \psi \in B_{p}^{s-a-1 / p}(\partial \Omega)$.
There is Fredholm solvability at least when P is principally like $(-\Delta)^{a}$. (G in A\&PDE '14)
One can check that when u is in the smaller space $H^{(s)}(\bar{\Omega})$ (i.e., when the Dirichlet value $\gamma_{0}\left(\frac{u}{d^{a-1}}\right)$ vanishes), then the Neumann value $\gamma_{1}\left(\frac{u}{d^{a-1}}\right)$ equals $\gamma_{0}\left(\frac{u}{d^{a}}\right)$.
The above boundary conditions are local. There exist other well-posed boundary conditions for $(-\Delta)^{a}$, of interest in probability theory, that are nonlocal.

5. Integration by parts

Finally, just a few words on integration by parts. When u is in the Dirichlet domain $H^{a(s)}(\bar{\Omega})$, then as noted, $\gamma_{0}\left(\frac{u}{d^{a}}\right)$ plays the role of a Neumann boundary value. We can show (G JDE'16):
Theorem 10. Let P be a classical ψ do of order 2a $(0<a<1)$ with even symbol, elliptic avoiding a ray. Then for $u, u^{\prime} \in H^{a(s)}(\bar{\Omega}), s>a+\frac{1}{2}$,

$$
\begin{aligned}
& \int_{\Omega} P u \partial_{j} \bar{u}^{\prime} d x+\int_{\Omega} \partial_{j} u \overline{P^{*} u^{\prime}} d x \\
& \quad=\Gamma(a+1)^{2} \int_{\partial \Omega} s_{0}(x) \nu_{j}(x) \gamma_{0}\left(\frac{u}{d^{a}}\right) \gamma_{0}\left(\frac{\bar{u}^{\prime}}{d^{a}}\right) d \sigma+\int_{\Omega}\left[P, \partial_{j}\right] u \bar{u}^{\prime} d x
\end{aligned}
$$

where $\left[P, \partial_{j}\right]$ is the commutator $P \partial_{j}-\partial_{j} P$. Here ν_{j} is the j 'th component of the normal vector ν, and $s_{0}(x)=p_{0}(x, \nu(x))$.
It was shown first for $P=(-\Delta)^{a}$ by Ros-Oton and Serra ARMA '14, then in a joint work with Valdinoci '16 for translation-invariant selfadjoint positive homogeneous P, by integral operator methods. The new thing here is to allow variable coefficients, nonselfadjointness, lower-order terms, by ψ do methods - in particular finding the new term with $\left[P, \partial_{j}\right]$. Such formulas are useful for nonexistence proofs in nonlinear problems.

There is a corollary with ∂_{j} replaced by a radial derivative $x \cdot \nabla$, and of course other integral terms. As a corollary of this, we can show a Pohozaev-type formula for semilinear problems:
Consider the nonlinear Dirichlet problem

$$
\begin{equation*}
r^{+} P u=f(u), \quad \text { supp } u \subset \bar{\Omega}, \tag{7}
\end{equation*}
$$

where $f(s) \in C^{0,1}(\mathbb{R})$. Let $F(t)=\int_{0}^{t} f(s) d s$.
Corollary 11. Let P be selfadjoint. Any bounded real solution u of (7) satisfies the Pohozaev formula:

$$
\begin{aligned}
-2 n \int_{\Omega} F(u) d x & +n \int_{\Omega} f(u) u d x \\
& =\Gamma(1+a)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{d}}\right)^{2} d \sigma+\int_{\Omega}[P, x \cdot \nabla] u u d x
\end{aligned}
$$

If P is x-independent, the last term is replaced by $\int_{\Omega} \operatorname{Op}\left(\xi \cdot \nabla_{\xi} p\right) u u d x$. Example. Applied to $P=\left(-\Delta+m^{2}\right)^{a}$ with $f(u)=\operatorname{sign} u|u|^{r}$, this implies that on sharshaped domains, there are no nontrivial solutions in the critical and supercritical cases, where $r \geq \frac{n+2 a}{n-2 a}$. This follows from a sign analysis of the entering terms.

Details, if there is time: When $p(\xi)=\left(|\xi|^{2}+m^{2}\right)^{a}$,
$\xi \cdot \nabla p(\xi)=2 a|\xi|^{2}\left(|\xi|^{2}+m^{2}\right)^{a-1}=2 a\left(|\xi|^{2}+m^{2}\right)^{a}-2 a m^{2}\left(|\xi|^{2}+m^{2}\right)^{a-1}$,
so $\operatorname{Op}(\xi \cdot \nabla p(\xi))=2 a P-P_{1}$, where $P_{1}=2 a m^{2}\left(-\Delta+m^{2}\right)^{a-1}$ is a positive operator. The Pohozaev identity is then

$$
\begin{aligned}
-2 n \int_{\Omega} F(u) d x+(n-2 a) & \int_{\Omega} f(u) u d x+\int_{\Omega} P_{1} u u d x \\
& =\Gamma(1+a)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{a}}\right)^{2} d \sigma .
\end{aligned}
$$

When $f(u)=\operatorname{sign} u|u|^{r}$ with an $r>1, F(u)=\frac{1}{r+1}|u|^{r+1}$, giving the formula
$\frac{-2 n+(n-2 a)(r+1)}{r+1} \int_{\Omega}|u|^{r+1} d x+\int_{\Omega} P_{1} u u d x=\Gamma(1+a)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{d}}\right)^{2} d \sigma$.
When $r \geq \frac{n+2 a}{n-2 a}$, the left-hand side is positive unless $u \equiv 0$. For star-shaped Ω, the right-hand side is ≤ 0. In such cases there are no nontrivial solutions.

