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The topic of this lecture:
Boutet de Monvel’s contributions
to the theory of Toeplitz operators

In this lecture I’ll focus for the most part on the abstract theory
of Toeplitz operators, or alternatively, the theory of Hermite
operators, a theory developed by Boutet and Boutet-Treves in
the early- to mid-1970’s.
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I also want to spend some time discussing the concrete theory of
Toeplitz operators, in particular, Boutet’s paper with Sjöstrand,
“Sur la singularité des noyaux de Bergman et Szego.”

The operators figuring in this paper, by the way, are not
Hermite operators per se, but a closely related class of
operators: the Fourier integral operators with complex phase
invented by Melin and Sjöstrand.
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(But I’ll be a little sloppy about differentiating between them
since, in a lot of contexts they can be used interchangeably.)

Last but not least, I will talk a bit about my own collaboration
with Boutet and our monograph in the Princeton University
Press Series, The Spectral Theory of Toeplitz Operators.
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To define Hermite operators I’ll first have to define Hermite
distributions, and I’ll begin this talk by describing a result of
Hormander which involves the first example I know of of a
Hermite-like distribution. (In fact one can think of Hermite
distributions as “superpositions” of this Hormander example.)
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A quick review of some basic definitions.

Let µ be a distribution defined on an open subset X of Rn and
let x0 be a point of X.

Definition 1. x0 /∈ sing. supp µ iff ∃ρ ⊂ C∞0 (X) with
ρ(x0) 6= 0 and ρµ ∈ C∞0 (X).
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Alternatively: x0 /∈ sing. supp µ iff ∃ρ ⊂ C∞0 (X) with ρ(x0) 6= 0
and |ρ̂µ(ξ)| ≤ CN (1 + |ξ|)−N for all N.

Hormander’s refinement of this definition
Let ξ0 ∈ T ∗x0 − {0}.

Definition 2. (x0, ξ0) /∈WF (µ) iff ∃ρ ∈ C∞0 (X) with ρ(x0) 6= 0

and |ρ̂µ(ξ)| ≤ CN (1 + |ξ|)−N for all N and for ξ
|ξ|
·

= ξ0
|ξ0|
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Recall now the following result of Laurent Schwartz

Theorem. For any closed subset, Z, of X there exists a
distribution, µ, with singular support Z.

Proof. Let x1, x2, x3, . . . be a dense subset of Z and choose
the ai’s in the sum below

µ =
∑

aiδxi ai ∈ R

so that the sum converges.
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Hormander’s generalization of this

Theorem. For any closed conic subset, Σ, of T ∗X −O there
exists a distribution, µ, on X with WF (µ) = Σ.

Proof. By an argument similar to (*) it suffices to show

Theorem. Given ξ0 ∈ T ∗x0 there exists a distribution, µ, on X
with WF (µ) = {(x0, λξ0), λ > 0}
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Proof. Let Rn = R× Rn−1, x = (t, y) and ξ = (τ, η), and
consider the product

g(ξ) = f

(
η√
τ

)
ρ(τ)

with f ∈ S(Rn−1), ρ ∈ C∞(R) and

ρ(τ) =

{
0, τ < 1

1, τ > 2

Theorem. The wave front set of the distribution

µ =

(
1

2π

)n ∫
eix·ξg(ξ)dξ

is the set, x = 0, η = 0, τ > 0
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Proof. By the Fourier inversion formula g = µ̂(ξ) and g is
rapidly decreasing along all rays for which η 6= 0 and is zero for
τ < 0. Hence WF (µ) is contained in the set η = 0, τ > 0.

Moreover for D = 1√
−1

(
∂
∂ξ1
, . . . , ∂

∂ξn

)
(I) |Dαg(ξ)| ≤ Cα(1 + |ξ|)−

|α|
2

and

(II) xαµ =
(

1
2π

)n ∫
Dαgeix·ξdξ
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and by (I) and (II) µ is C∞ for x 6= 0.

I’ll now generalize this result a bit: Let Σ0 be a k dimensional
subspace of T ∗0 Rn and choose coordinates x = (t, y) on Rn and
dual coordinates ξ = (τ, η) on (Rn)+ so that Σ0 is the set x = 0
and ξ = (τ, 0)
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Let fm(ξ) = fm(τ, η) be a C∞ function which is homogeneous
of degree m in τ for |τ | � 0, is zero for τ small and is rapidly
decreasing in η and let f(ξ) be a C∞ function which admits an
asymptotic expansion

f(τ, n) =

−∞∑
i=0

fmi(τ, η)

with m0 = m− n
2 and mi → −∞
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Replacing the µ in the discussion above by

(1) µ =

(
1

2π

)n ∫
eix·ξf

(
τ,

η√
|τ |

)
dξ

one gets essentially the same proof as above:

Theorem WF (µ) ⊆ Σ0

Following Boutet we’ll denote the space of these distributions
by Im(Rn,Σ0)
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The elements of this space are the prototypical examples of
Hermite distributions.

The definition of “Hermite” in general: Let X be an
n-dimensional manifold and let Σ be a conic isotropic
submanifold of T ∗X − 0
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Definition. A distribution, µ, on X is in Im(X,Σ) if, for every
(x, ξ) in Σ there exists a (0, ξ0) in Σ0, a conic neighborhood, U ,
of (x, ξ) in T ∗X − 0, a conic neighborhood, U0, of X0, ξ0 in
T ∗Rn − 0 and a homogeneous canonical transformation
φ : U → U0 mapping U ∩ Σ onto U0 ∩ Σ0 such that, for every
zeroth order F.I.O. with microsupport on graph φ,
Fµ ∈ Im(Rn,Σ0)
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i.e. µ is in Im(X,Σ) if, at every point (x, ξ) ∈ Σ it is
micolocally isomorphic to a distribution, µ0 ∈ Im(Rn,Σ0)
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Hermite operators

Let X be an n-dimensional manifold and Σ ⊆ T ∗X − 0 a closed
conic symplectic submanifold of T ∗X. We will identify Σ with
the isotropic submanifold

Σ = {(x, ξ, x,−ξ), (x, ξ) ∈ Σ}

of T ∗(X ×X)− 0 and define Hermite operators with
microsupport on Σ to be operators of the form
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TK : C∞(X)→ C∞(X)

where K is a distributional Kernel in I(X ×X,Σ)

How do these operators come up in practice? To answer this let
me turn first to the paper of Boutet de Monvel: “Hypoelliptic
operators with double characteristics and related
pseudo-differential operators” CPAM (1974)
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For lack of time I won’t attempt tp define “hypoelliptic
operators, P, with double characteristics” except to say that
they occur in two flavors: “involutive” if the characteristic
variety of P is an involutive submanifold of T ∗X −O and
“symplectic” if it is symplectic. I’ll also mention for future use
that an operator of the second kind is the “∂̄b Laplacian”
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What is the role of Hermite operators in this subject?

In his introduction to this paper Boutet parenthetically remarks
that for hypoelliptic operators of the second kind “Hermite
operators provide a precise description of their Kernels and co
Kernels mod C∞”. To see how this works in the example above
I’ll turn next to:
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L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des
noyaux de Berman et de Szego

The introduction to this paper: Some basic definitions
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Soit Ω ⊆ Cn un ouvert borne en Cn, de frontiere C∞, X = ∂Ω,
strictement pseudoconvex. Ω est donc defini par une inequation
ρ < 0 ou ρ est une fonction reelle C∞ sur Cn et dρ 6= 0 si ρ = 0.
(Donc X est le varieté ρ = 0)

Nous rappelons:
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Si f ∈ C∞(Ω̄) ∩O(Ω), la trace f |X verify les equation de
Cauchy-Riemann induit, ∂̄b(f |X) = 0.

Maintenent soit:

B : L2(Ω̄)→ L2(Ω̄) ∩O(U)

et
S : L2(X)→ L2(X) ∩Ker ∂̄b

les projections orthogonales des espaces au gauche sur les
sous-espaces au droite (les projecteurs de Bergman et Szego).
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Avec ses notations Boutet et Sjöstrand demontrent

Theoreme S est un operateur integrale de Fourier a phase
complexe dans le seus de Melin-Sjöstrand (ou, alternativement,
un operateur de type Hermite associé a la variete symplectique
conique,

{
(x, ξ), x ∈ X, ξ = iλ∂̄ρx|X

}
.)
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Puis ils remarquent:

“On passe de la au noyau de Bergman en
exploitant le fait qu’une fonction holomorphe est
harmonique, donc s’exprime en fonction de sa trace
sur le bord au moyen du noyau de Poisson.”
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Using microlocal techniques they are able to obtain a very
precise description of the asymptotic properties of S and then,
exploiting the remark above, obtain analogous asymptotic
properties for B.
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Some consequences. Let ρ as above be the defining function for
bd(Ω) = X and ψ(x, y) ⊂ C∞(Cn × Cn) a function with the
properties

1. ψ(x, x) = ρ(x)

2. ∂̄xψ and ∂yψ vanish to infinite order at x = y ∈ X
3. ψ(x, y) = ψ̄(y, x)
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Theoreme Il existe des fonctions, F,G sur X ×X (resp. F ′, G′

sur Ω̄× Ω̄) telle que 1

S = F (−iψ)−n +G(−iψ)

et
B = F ′(−iψ)−n−1 +G′ Log (−iψ)

1Sur X ×X on note un peu abusivement que (−iψ)−n est la distribution
limite pour ε→ 0+ de (−ψ + ε)−n
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One well known corollary of this result is the theorem of
Fefferman

B(z, z̄) = F ′(z, z̄)ρ−n−1 +G′(z, z̄) log ρ

and in fact provides a microlocal proof of this result.

30 / 49



A quote (from Charles Epstein’s review of the paper above in
the Boutet memorial volume)

“Beginning with the papers of Catlin and Zelditch
in the 1990’s the FIO constructions of these kernel
functions has proved extremely useful. This paper was
cited only 5 times between its publication and 1997 and
110 times between 1998 and 2014.”
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I’ll now come back to the theory of abstract Toeplitz operators
and say a few words about my monograph with Boutet. Let X
be a compact manifold and Σ a closed conic symplectic
submanifold of T ∗X −O. Then one can construct abstracrt
analogues of the Szego projector, S, namely Hermite operators,
Π, with microsupport on Σ satisfying

Π = Πt = Π2
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In addition on can show that the set of operators

{T = ΠPΠ, P ∈ Ψ(X)}

is an algebra having a lot of properties of the algebra of
pseudodifferential operators, Ψ(X), itself. In particular to each
operator, T = ΠPΠ one can attach a symbol

σ(T ) = σ(P )|Z
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Moreover these symbols have a lot of the same properties as
symbols of pseudodifferential operators, e.g.

σ(T1)σ(T2) = σ(T1T2)

In [BG] we show also that a lot of basic theorems in the spectral
theory of pseudodifferential operators on compact manifolds
have Toeplitz analogues. I’ll content myself here by describing
three such theorems.
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Theorem 1. (Weyl’s theorem) Let T be a self adjoint first
order Toeplitz operator with σ(T ) > 0 and let
λ1 ≤ λ2 ≤ λ3 ≤ . . . be its spectrum. Then if N(λ) is the
number of λi’s less than λ

N(λ) =
vol(Σ1)

(2π)n
λn +O(λn−1)

Σ1 being the subset, σ(T ) = 1 of the cone Σ.
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Theorem 2. (Helton’s theorem) Let Ξ be the Hamiltonian
vector field on the symplectic cone Σ associated with σ(T ) and
let Λ be the set of cluster points of the set {λi − λj} . Then
Λ 6= R only if the trajectory of Ξ through every point of Σ is
periodic.
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Theorem 3. (The wave trace theorem)

The distribution
Σe
√
−1λit

has singular support contained in the set of periods, Tγ , of the
period trajectories of exp Ξ. Moreover if these periodic
trajectories are simple

Σe
√
−1λit = Σαγ(t− Tγ +

√
−1 0+)−1 + . . .

where “. . . ” is locally summable.
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Moreover, there are simple formulas for the aγ ’s (which I won’t
have time to describe here).
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The results above are, as I have mentioned, contained in my
monograph with Louis, The Spectral Theory of Toeplitz
Operators.

There is also an appendix to this monograph, written by Louis,
on “quantized contact structures” and I’d like to conclude by
describing briefly some of the items discussed in this appendix.
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First a word about quantized contact structures: Let X be a
compact 2n− 1 dimensional manifold and α ∈ Ω1(X) a contact
form. Then the set

Σ =
{

(x, λαx), x ∈ X,λ ∈ R+
}

is a conic symplectic submanifold of T ∗X − 0 and hence, by the
techniques described earlier in this lecture, can be quantized.
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In other words on can associate to Σ a generalized Szego
projector Π : L2(X)→ H2(X) and an algebra of Toeplitz
operators on H2(X)

ΠPΠ, P ∈ Ψ(X)

Example: Let Ω ⊆ Cn be a strictly pseudoconvex domain with
C∞ boundary, X.
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Then if ρ is as above a defining function for X,

α =
√
−1∂̄ρ|X

is a contact form and we can take for the quantization of (X,α)
the Szego projector, S, and the algebra of Toeplitz operators,
SPS.
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In what I’ve discussed so far the Π figuring in the quantization
of a contact manifold (X,α) can be assumed to be either a
Hermite operator or a Fourier integral operator with complex
phase, but for what I’ll be describing next I’ll have to assume
the latter is the case.
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Making this assumption Boutet shows that this quantization
has some other striking similarities with the quantization of the
boundary, X, of a pseudoconvex domain other than those I’ve
already discussed. Namely for a pseudoconvex domain one has
a ∂̄b complex

(2) C∞(X)
∂̄b→ C∞(X,Λ0,1

b )
∂̄b→ · · ·
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and in his article “On the index of Toeplitz operator of several
complex variables”, Inventiones Math. (1979) he uses this
complex to prove a Toeplitz version of the Atiyah-Singer
theorem.
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One of the main results in his appendix to our monograph:

An analogue of this complex exists for arbitrary quantized
contact structures.
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To end on a personal note:

The first draft of this monograph was written in the spring of
1978 when both of us were participating in a ”Year in
Microlocal Analysis” at the IAS and the following summer he
invited me to spend a month in Paris with him and during this
time we got the monograph into publishable form and Louis put
the finishing on the appendix.
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This summer was the first of many summer visits to Paris in
which I had the chance to continue to be in contact with Louis;
and although they didn’t result in a “Theory of Toeplitz
operators, part 2” I acquired from these visits and my contact
with him many new and beautiful insights.
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I should also mention that it was during this period 1978–1979,
that I got to know well two of my current collaborators,
Johannes and Anne, with whom I’ve been collaborating on the
Boutet memorial volume and which, thanks largely to their
efforts, is soon to see the light of day.
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