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Introduction: Dedication

This talk is dedicated Louis Boutet de Monvel, a great
mathematician from whom I have had a lot of inspiration through
his works, through discussions, seminar talks and through a fruitful
collaboration.
He was a kind and generous person who largely contributed to
make me feel welcome in Paris more than 40 years ago.
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Introduction: Background and goals

With C. Presilla [PrSj96] (following a work with Presilla and G.
Jona-Lasinio) we considered a non-linear evolution problem for a
mesoscopic semi-conductor device and did some heuristic work. On
R, we consider “metallic conductors” at ]−∞, a], [b, c] and
[d ,+∞[ where a < b < c < d . Here a, b, d are fixed and
c = b + h, h→ 0. [a, b] and [c , d ] represent semi-conductors. Let
V1 be an exterior voltage applied between the two infinite
conductors.

Incoming charged particles from the left of energy E ≥ 0 with the
distribution g(E )dE , supported on [0,EF ], where EF < V0 is the
Fermi energy. We assume that they interact only inside the device
(i.e. on [a, d ]) through a modification of the common potential due
to charge accumulation there.
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This leads to a Schrödinger equation, writing D∗ = −i∂/∂∗,
∗ = t, x , (

hDt + (hDx)2 + V (x , s(u(t, ·)))
)

u(t, x ,E ) = 0, (1)

where

V (x , s) = V (x , 0)+sW0(x),

s(u(t, ·)) =

∫ ∫ (c+d)/2

(a+b)/2
|u(t, x ,E )|2g(E )dxdE , (2)
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is the accumulated charge inside the device and W0(x) ≥ 0 is a
fixed “profile” with support in ]a, d [. We ([PrSj96]) used the
1-mode approximation

u(t, x ,E ) ≈ e−iEt/hz(t,E )e(x , s(u(t, ·))), (3)

where e = e(x , s(u(t, ·))) is a resonant state (6∈ L2) corresponding
to a resonance λ(s(u(t, ·))) in the lower half-plane. We derived a
simpler evolution equation

h∂tz(t,E ) = i(E − λ(s))z(t,E ) + B(t, s,E ),

s = s(t) ∼
∫
|z(t,E )|2g(E )dE .

(4)

Related to an even simpler differential equation for s(t). We could
describe fixed points of the vector field in (4), and hysteresis
phenomena under slow variations of the exterior bias V1 = V1(t).
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The mathematical treatment of the model (1) is a very vast
program.
Some rigorous works:
I Bonnaillie-Nier-Patel [BoNiPa08, BoNiPa09], the stationary

problem: fixed points,
I Faraj-Mantile-Nier [FaMaNi11].

We seem to need a strong adiabatic theorem with adiabatic
parameter ε satisfying ln ε � −1/h.
I There are many works (E. Skibsted [Sk89], C. Gérard-I.M.

Sigal [GeSi92], A. Soffer-M.I. Weinstein [SoWe98], G.
Perelman [Pe00], S. Nakamura-P. Stefanov-M. Zworski
[NaStZw03]) on time evolution in relation with resonances.

I We are interested in exact solutions of (1), (10) and their
approximation with the formal ones. Adiabatic theorems have
been obtained by G. Nenciu [Ne81], [Ne93], A. Joye, C.E.
Pfister [JoPf97], Joye [Jo07]. Galina Perelman [Pe00] has an
adiabatic theorem in the L2-setting. She got adiabatic
approximation over time intervals of length ε−δ for some fixed
δ > 0.
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To improve this result, we work in adapted Hilbert spaces that
contain the relevant resonant states, with the goal of having an
adiabatic approximation to all orders in ε, over time intervals of
length ε−N for any fixed N ≥ 0. Then the evolution is no longer
unitary and our main result so far says that we can arrange so that
the generator of our evolution has an imaginary part which is ≤ εN
for any N. We will describe this result and give an outline of the
remaining work that should lead to the adiabatic goal.
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Resonances for the Schrödinger operator

Let P = −h2∆ + V (x) on Rn, where 0 < h ≤ 1 and
V ∈ C∞(Rn;R) has a holomorphic extension to a truncated
sector, {x ∈ Cn; |<x | > C , |=x | < |<x |/C}, where it tends to 0 as
x →∞. The resonances of P are the poles of the meromorphic
extension of (z − P)−1 : L2

comp(Rn)→ H2
loc(Rn) from the open

upper half-plane across ]0,+∞[ to a sector
{z ∈ C \ {0}; −θ0 < arg (z) ≤ 0}, where θ0 > 0. They can also be
viewed as poles of a meromorphic extension of the scattering
matrix, when V is sufficiently short range.
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P is self-adjoint in L2(R) and hence has real spectrum,
nevertheless a standard approach to resonances is to find a suitable
Hilbert space H containing the Hermite functions as a dense
subspace and such that P acts on H as a closed unbounded
operator with no spectrum in the open upper half-plane and
discrete spectrum in the intersection of the lower half-plane with a
disc D(E0, r0), E0 > 0, r0 > 0.

Eigenfunctions in H = Resonant states.
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The classical method of complex distorsions: Aguilar–Combes,
Balslev–Combes, Simon, Hunziker, ... We replace Rn by a smooth
manifold Γ ⊂ Cn of real dimension n, naturally diffeomorphic to
Rn, containing the ball BRn(0,C ), and contained in the union of
Rn and the truncated sector above. Typically we choose Γ so that
Γ coincides with e iθRn far away, where θ > 0 is small enough.
Then H := L2(Γ). ([SjZw91]).

A more intuitive approach with microlocal analysis, was developed
by Helffer and the speaker [HeSj86]: Use of phase space weights
and suitable FBI-transforms. Roughly, if G (x , ξ) is such a weight
and s > 0 small, we put

H = H(ΛsG , 1) = e(s/h)G(x ,hDx )L2(Rn).
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Here ΛsG = {ρ+ isHG (ρ); ρ ∈ R2n} is a deformation of the real
phase space. Choose G with support in

{(x , ξ) ∈ R2n; |x | ≥ C , |ξ| ≤ O(1)}

in the class S(〈x〉), meaning that ∂αx ∂
β
ξ G = O(〈x〉1−|α|〈ξ〉1−|β|).

Then P : H → H is an h-pseudodifferential operator with leading
symbol

p|ΛsG
= p(ρ+ isHG (ρ)) = p(ρ)− isHpG (ρ) +O(s2),

where p(x , ξ) = ξ2 + V (x).

Let G be an escape function in the sense that

HpG ≥ 1/C , when |x | ≥ C , p(x , ξ) = E0

for some fixed energy E0 > 0. Then p(ΛsG \ a compact set) avoids
a region [E0 − 1/C ,E0 + 1/C ] + i [−s/C ,+∞[ and P : H → H
has discrete spectrum there, confined to the lower half-plane.
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A semiboundedness result

We have chosen to study the time evolution in a space H that
contains the relevant resonant states. Then we loose the unitarity
and the very first problem is to avoid a too strong exponential
growth in time. Our main result so far in the project with A.
Mantile and M. Hitrik is:
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Theorem
There is an escape function G = Gε(x , ξ), 0 < ε� 1 which
vanishes when |x | ≤ 1/ε and when |p(x , ξ)− E0| ≥ 1/C , such that
if H = H(ΛsGε), 0 < s ≤ 1, then

P : H → H (5)

fulfills the bounds
=P ≤ sCNhNεN , (6)

for every N ≥ 1. Moreover, Gε form a bounded family in S(〈x〉).
P in (5) has discrete spectrum in
]E0 − 1/C ,E0 + 1/C [+i ]− s/C ,+∞[.

The use of spaces of [HeSj86] seems essential. A. Faraj, Mantile
and F. Nier [FaMaNi11] have used complex distorsions and
achieved =P ≤ 0 by modifying a transmission condition. This
however changes the resonances and the problem under study.
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Corollary

Let I be an interval. If 3 t → u(t) is of class
C 0(I ;D(P)) ∩ C 1(I ;H) and solves (Dt + P)u(t, x) = 0, then

‖u(t2)‖H ≤ esCNh
NεN(t2−t1)‖u(t1)‖H, (7)

for t1 ≤ t2, t1, t2 ∈ I .

The proof of the corollary is standard:

∂t‖u(t)‖2 = 2=(Pu|u) ≤ 2CNs(hε)N‖u(t)‖2

which leads to the estimate (7).
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Outline of the proof. Applying results and ideas from [HeSj86]
and C. Gérard–Sj [GéSj87] we first construct an escape function G
vanishing for |x | ≤ 1 such that HpG ≥ (1/O(1))‖HG‖g in
p−1([E0 − 1/C ,E0 + 1/C ]), where g = (dx/〈x〉)2 + (dξ/〈ξ〉)2. Let
0 ≤ χ ∈ C∞0 (]E0 − 1/C0,E0 + 1/C0[), be equal to one on a slightly
smaller interval and put G0 = χ(p)G . Then G0 is an escape
function with

HpG0 = χ(p)HpG ≥ ‖HG0‖
2
g .

If H = H(ΛsG0), we get =P ≤ O(1)sh and microlocally
≤ sO(h∞) away from suppG0. Successive improvements lead to
G̃ ∼ G0 + hG1 + h2G2 + ... such that

=P ≤ sO(h∞)

for P acting in H(Λ
sG̃

). Here HpG1 � 1/C near suppG0, ...
To gain powers of ε, work in a region |x | ≥ 1/ε and use that there
is an effective Planck’s constant h̃ = h/〈x〉 which is ≤ h/ε for
|x | ≥ 1/ε. �
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Adiabatic evolution and shape resonances

Consider a potential V with a thin potential well in an island Ö
(defined to be open)

Assume that V is
analytic near the sea Rn \ Ö, and that p = ξ2 + V has no trapped
classical trajectories at energy E0 over the sea.
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Then for h > 0 small enough, P = −h2∆ + V has finitely many
resonances λj(h) = λj ,0 +O(h) in a fixed neighborhood of E0 with
=λj = O(e−1/Ch).
We often have a full asymptotic expansion for λj and its imaginary
part (with exponential prefactor) [HeSj86]. Pick one of these
resonances λ0 and assume to fix the ideas that <λ0,0 = E0, that
λ0 is simple and separated from the other resonances by some
fixed distance.
Now let V = Vt = V0 + Wt , be smoothly time dependent for t in
some interval I , and assume that suppWt is contained in a fixed
compact subset of the island. Also assume that Wt is small. Then,
Pt = −h2∆ + Vt has a simple resonance λ0(t), separated from the
other ones by some fixed distance. Let G be an adapted escape
function ([HeSj86]) and consider P = Pt : D → H, H = H(ΛsG ),
D = H(ΛsG , 〈ξ〉2) (an associated Sobolev space).
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Formal adiabatic solutions. We are interested in the evolution
(Dτ + P(ετ))u = 0 where ε > 0 is very small (actually
exponentially small in h) or equivalently, in (εDt + P(t))u = 0
with t = ετ ∈ I . The formal adiabatic construction is well known
([Ne81, Ne93]):

Proposition

There exist two asymptotic series independent of the particular
choice of H,

ν(t, ε) ∼ ν0(t) + εν1(t) + ..., in C∞(I ;D),

λ(t, ε) ∼ λ0(t) + ελ1(t) + ..., in C∞(I ),

where ν0(t) is a non-vanishing resonant state of P(t):
(P − λ0(t))ν0(t) = 0, such that

(εDt + P(t)− λ(t, ε))ν(t, ε) ∼ 0 in C∞(I ;H). (8)
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Proof.
Establishing (8) in the sense of formal power series amounts to
solving a sequence of equations,

(P(t)− λ0(t))ν0(t) = 0,

(P(t)− λ0(t))ν1(t) + (Dt − λ1(t))ν0(t) = 0,

...........

(9)

Let first ν0(t) be a resonant state depending smoothly on t. Then
λ1(t) is uniquely determined by the requirement that
(Dt − λ1(t))ν0(t) ∈ R(P(t)− λ0(t)) = closed hyperplane
transversal to ν0(t). Iterate ...

u := ν exp−(i/ε)
∫ t
λ(̃t, ε)dt̃ is a formal solution of

(εDt + P(t))u = 0, (10)

which in principle decays exponentially when t increases.

19 / 26



Let νad, λad denote asymptotic sums of ν, λ and define the
corresponding function uad, so that

(εDt + P(t))uad = r , r = O(ε∞) in H. (11)

Suppose that the conclusion of Theorem 3.1 were valid with a
space H as above, independent of ε. Then, cf. Corollary 3.2 and
T. Kato [Ka70], we have a forward fundamental matrix E (t2, t1),
t1 ≤ t2, tj ∈ I for εDt + P(t) such that
‖E (t2, t1)‖L(H,H) ≤ exp[ON(hNεN)(t2 − t1)] for every N ≥ 1, and
we have the exact solution of (10),

u = uad − ε−1

∫ t

t0

E (t, t̃)r (̃t)dt̃,

defined on I ∩ [t0,+∞[ for every t0 ∈ I . Choosing ε = εδ for some
fixed small δ > 0, we get ‖u − uad‖ = O(ε∞) on [t0, t1] ⊂ I , as
long as t1 − t0 ≤ O(ε−N0) for some fixed N0 ≥ 1.
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Now H does depend on ε and we need some uniform control on
(z − P(t))−1 for z not too close to λ0(t, ε). This seems to work in
the following way: With ε ≥ e−C/h/C , we choose ε = εδ for some
small δ > 0, so that λ0(t) ∈]E0 − 1/C ,E0 + 1/C [+i ]− ε/C ,+∞[
as in Theorem 3.1.
Let Gsbd := εGTh. 3.1, where GTh. 3.1 denotes the escape function of
Theorem 3.1.

(z − P)−1 = O(1/εN0) : H(ΛGsbd
)→ H(ΛGsbd

). (12)
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Returning to the adiabatic construction, we get (possibly with a
new fixed N0),

νj = O(ε−N0j) = O(ε−N0δj) in H(ΛGsbd
),

so εjνj = O(εj(1−N0δ)) and r = O(ε∞) in H(ΛGsbd
), provided that

δ is small enough.
In conclusion, it seems that we can justify the adiabatic
approximation of exact solutions up to any power of ε over time
intervals of length up to any fixed negative power of ε, for the case
of a potential well in an island, with ε ≥ (1/C )e−C/h, ∀ fixed
C > 0.
Method of complex distorsions with small angles in similar
contexts: Martinez, A. Lahmar-Benbernou, Martinez [LaMa02],
Martinez, T. Ramond, Sj [MaRaSj09].
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