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Bergman kernels on positive line bundles

This talk concerns the space H0(M, Lk) of holomorphic sections of
the kth power of a positive Hermitian holomorphic line bundle
L→ M over a Kähler manifold (M, ω). The Hermitian metric is
denoted by h and in a local frame eL it is denoted by
|eL(z)|2h = e−ϕ. Positive Hermitian means that i∂∂̄ log h = ω is a
Kähler form. The key object in this talk is the orthogonal

projection,
Πhk : L2(M, Lk)→ H0(M, Lk)

with respect to the inner product

〈s1, s2〉 :=

∫
M

(s1(z), s2(z))hk
ωm

m!
.

The Schwartz kernel of Πhk (z ,w) relative to the volume form ωm

m!
is known as the semi-classcial Bergman kernel or Szego kernel.



Boutet de Monvel-Sjostrand parametrix

The projections Πhk onto H0(M, Lk) lift to projections Π̂hk on the
principal S1 bundle ∂D∗h ⊂ L∗ where D∗h = {(z , λ) : |λ|hz < 1}.
This is a strictly pseudo-convex domain in L∗. The sum
Π =

∑
k≥0 Π̂hk is the true Szego kernel

Π̂ : L2(∂D∗h)→ H2(∂D∗h)

onto boundary values of holomorphic functions on D∗h

Near the diagonal in ∂D∗h × ∂D∗h , the Boutet de Monvel-Sjostrand
parametrix is:

Π̂(x , y) =

∫ ∞
0

e−σψ(x ,y)χ(x , y)s(x , y , σ)dσ + R̂(x , y). (1)

Here, χ(x , y) is a smooth cutoff to the diagonal; s(x , y , σ) is a
semi-classical symbol of order m = dimC M.



The phase

When the Kähler metric ω is real analytic, the phase ψ is
constructed from the Kähler potential ϕ(z) of ω0 by

ψ(x , y) = ψ((z , λ), (w , µ)) = 1− λµ̄eϕ(z,w̄) (2)

where ϕ(z , w̄) is the analytic extension of ϕ(z) = ϕ(z , z̄) into the
complexification M × M̄ of M. Also,

s ∼
∞∑
n=0

σm−nsn(x , y) (3)

is an analytic symbol in the sense of Boutet de Monvel. Finally,
the remainder term R̂(x , y) is real analytic in a neighborhood of
the diagonal. If ω is only C∞ then ψ(z ,w) is defined by an
almost-analytic extension and the remainder R is C∞.



Partial Bergman kernels

Our interest is not in the full Bergman kernel but in the partial
Bergman kernels (PBK’s): Partial Bergman kernels

Πk,Sk : L2(M, Lk)→ Sk ⊂ H0(M, Lk) (4)

are orthogonal projections onto proper subspaces Sk of the
holomorphic sections of Lk . For certain sequences Sk of subspaces,
the partial density of states k−mΠk,Sk (z , z) has an asymptotic
expansion as k →∞ which roughly gives the probability density
that a quantum state from Sk is at the point z . If {sk,j} is an
ONB for Sk , then

Πk,Sk (z , z) =

dimSk∑
j=1

|sk,j(z)|2hk .

Here and henceforth, the value on the diagonal means the metric
contraction.



Sections vanishing to high order on a hypersurface

A motivating example: Let Y ⊂ M be a complex hypersurface
(divisor). Let

SYk,t := H0(X ,O(Lk)⊗ ItkY ),

holomorphic sections vanishing to order tk on Y .
Define the orthogonal projections

ΠY ,t
k (z ,w) : L2(X , Lk)→ H0(X ,O(Lk)⊗ ItkY ). (5)

Can one find the asymptotics ΠY ,t
k (z , z)?

It is “obvious” that ΠY ,t
k (z , z) should be exponentially decaying on

Y and in some tubular neighborhood of Y . But the details are not
known except in special cases (Toric (M, L, h)).



A motivating problem from the QHE

Other examples of Partial Bergman kernels arise in the quantum
Hall effect.
Suppose Ω ⊂ M is a domain in a kahler manifold Mm of dimension
m. We would like to fill it up with quantum states from
H0(M, Lk), with no ‘spill-over’ into M\Ω. If the states are

{skj }
dk,Ω
j=1 then heuristically we want

k−m
dk,Ω∑
j=1

|skj (z)|hk ' Cmkm1Ω(z).

Here, 1Ω is the characteristic function of Ω. Also, dk,Ω is the
dimension of the relevant subspace.

Of course, this is not literally possible. How close can we come?
What does the minimal ‘spill-over look like”.



Spectral theory of Toeplitz operators

If Ĥk : H0(M, Lk)→ H0(M, Lk) is a self-adjoint Toeplitz operator
such as Ĥk = Πhk HΠhk , then one might define Sk to be a spectral
subspace of Ĥk . In terms of

Ĥksk,j = µk,jsk,j

one may define

Sk = Span{sk,j : µk,j ∈ [E1,E2]}.

The corresponding partial Bergman kernel is the orthogonal
projection

Πk,Sk = 1[E1,E2](Ĥk)

to this subspace.



The answer in the S1-invariant 1D case

The ‘limit shape’ of the interface is an complete Gaussian:

There is an allowed region where the PBK is almost 1 and the
forbidden region where it is almost zero. The transition region has
width O( 1√

k
). This picture is in most standard texts on QHE.



Toric Kähler manifolds
The simplest partial Bergman kernels arise from toric Kähler
manifolds Mm. Then H0(M, Lk) is spanned by monomials zα

where α ∈ kP ∩ Zm is a lattice point in the kth dilate of the
polytope P corresponding to M, i.e. the image

µ : M → P

under the moment map. Subspaces may be defined by choosing
sub-polytopes P ′ ⊂ P which are ‘Delzant’. The corresponding zα’s
vanish to high order on the divisor at infinity.

I Shiffman -Zelditch (2004) In the allowed region
A := µ−1(P ′), the PBK asymptotics are the same as for the
full Bergman kernel. In the forbidden region
F := M\µ−1(P ′), they are exponentially decaying. The decay
rate is an explicit Agmon type function bP′ .

I (2014) Pokorny-Singer: Generalized the allowed asymptotics
of (Sh-Z) to any toric Kahler manifold and toric divisor. Main
novelty: distributional expansion of PBK on ∂A.



Density of states for a toric sub-polytope PBK
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Figure : Gaussian decay from allowed to forbidden



S1-invariant Kähler manifolds

Ross-Singer generalized the toric results to Kähler manifolds with a
holomorphic Hamiltonian S1 symmetry , with a hypersurface
Y ⊂ MS1

contained in the fixed point set (critical point set of the
Hamiltonian).

I (2014) Ross-Singer: Discovered the incomplete Gaussian
interface asymptotics for S1-invariant (M, L, h) for PBK’s
onto sections vanishing to order tk on an S1-invariant
hypersurface Y .

I (2016) (Peng Zhou-S. Z.) General Hamiltonian S1-invariant
(M, L, h) with no assumptions on fixed point set; exponential
decay rate and interface asymptotics.

Many of the results (in particular the interface asymptotics)
are valid for any Hamiltonian (in progress).



Filling domains with quantum states

If the domain Ω has the form E1 ≤ H ≤ E2 for some H : M → R,
then the eigensections (i.e. partial Bergman kernel) for the spectral
subspace of Ĥk with eigenvalues in [E1,E2] will fill it.

Another approach is to study the spectral theory of Πhk1ΩΠhk . R.
Berman proved a Szego limit theorem for the eigenvalues of this
operator. No results yet on interface asymptotics.

Shiffman-S.Z. and P. Zhou- S.Z. use the
Boutet-de-Monvel-Sjostrand parametrix to obtain simple and
accurate results.



Hamiltonian-holomorphic S1 actions on Kaehler manifolds

We now describe the results in the S1 case. The seting consists of
a positive Hermitian holomorphic line bundle (L, h)→ (M, ω, J)
over a Kähler manifold of complex dimension m carrying a
Hamiltonian holomorphic S1 action

exp iθ ξH : T×M → M, ιξHω = dH

where H : M → R is the Hamiltonian. Here T = S1.

Holomorphic means that for each θ, exp iθ ξH is a holomorphic
map. It follows that each is an isometry of g(X ,Y ) = ω(X , JY ).

It was observed by T. Frankel that a holomorphic S1 action is
always Hamiltonian if its fixed point set is non-empty.



Model examples on Cm+1 .

Standard S1 actions on Cm+1 have the form

e iθ · [Z0, . . . ,Zm] = [e ib0θZ0, . . . , e
ibmθZm], bj ∈ Z.

Extreme cases:

(i) e iθ · [Z0, . . . ,Zm] = [e iθZ0,Z1, . . . ,Zm], Hamiltonian |Z0|2,

with fixed point manifold Z0 = 0;

(ii) e iθ · [Z0, . . . ,Zm] = [e iθZ0, . . . , e
iθZm], Hamiltonian

m∑
j=1

|Zj|2

with isolated fixed point {0}.



Model examples on CPm

Standard S1 actions on CPm arise from subgroups
S1 ⊂ SU(m + 1) of the form

e iθ · [Z0, . . . ,Zm] = [Z0, e
ib1θZ1, . . . , e

ibmθZm], bj ∈ Z.

With no loss of generality it is assumed that b0 = 0. When
bj 6= bk when j 6= k, the action has m + 1 isolated fixed points,
Pj = [0, . . . , 0, zj , 0, . . . , 0]. The weights at Pj are {bj − bi}j 6=i .
The Hamiltonian (moment map) is

H~b([Z0 : · · · : Zm]) =
b1|Z1|2 + · · ·+ bm|Zm|2

|Z |2
.

.



S1 invariant Projective hypersurfaces

Example studied by F. Kirwan: the cubic hypersurface X ⊂ CP4,

x3 + y 3 + z3 = u2v ,

and let C∗ act on X via

t · [x , y , z , u, v ] = [t−1x , t−1y , t−1z , t−3u, t3v ].

Then XT has three fixed point components,

F1 = {[0, 0, 0, 1, 0]}, F2 = {[x , y , z , 0, 0] : x3 + y 3 + z3 = 0},

F3 = {[0, 0, 0, 0, 1]},

of which two (F1,F3) are isolated fixed points and F2 is a
hypersurface in X , i.e. a curve. The point P = [0, 0, 0, 0, 1] is
singular.



Ruled surfaces

Another setting of S1 invariant situation is ruled surfaces.

Let M be a Kähler manifold and let L→ M be a holomorphic line
bundle. L carries a natural C∗ action. Projectivize each line
Lz → PLz ' CP1 to get PL. It still carries a C∗ action. Equip the
CP1 bundle with an S1 invariant metric. Then the total space is
an S1-invariant kahler manifold with fixed point components ' M
corresponding to 0,∞ on CP1.



Linearization (quantization) of the S1 action

Let h be the Hermitian metric with i∂∂̄ log h = ω. If c1(L) = [ω],
then the Hamiltonian S1 action preserves (L, h) and can be
‘quantized’ or linearized to give a representation of T on the spaces
H0(X , Lk) of holomorphic sections of the tensor powers Lk . The
infinitesimal generator acts on a section by

ξ · s = (∇ξ + 2πikH)s =: Ĥks. (6)

Here, ∇ is the Chern connection.

(6) may be integrated to define a unitary representation of T

Uk(θ) = e ikθĤk : T× H0(M, Lk)→ H0(M, Lk)

on , equipped with the L2 norm Hilbhk induced by the Hermitian
metric h.



Weight decomposition of holomorphic sections and
equivariant Bergman kernels

Define the weight spaces by

Vk(j) = {s ∈ H0(M, Lk) : Uk(θ)s = e ijθs}

= {s ∈ H0(M, Lk) : Ĥks = j
k s}.

(7)

The associated eigenspace projections

Πk,j(z ,w) : H0(M, Lk)→ Vk(j) (8)

are called “equivariant Bergman kernels”. They have been studied
in detail by Shiffman-S.Z. (toric), X.Ma-W. Zhang (general
compact G ), R. Paoletti (general G ).



Partial Bergman kernels

The Hamiltonian is a Bott-Morse function H : M → [E−,E+]
where E± = max /min H. Let P ⊂ (E−,E+) be a proper closed
interval. Define the corresponding subspace

Hk,P :=
⊕
j : j

k
∈P

Vk(j) (9)

and partial Bergman kernels

Π|kP(z ,w) :=
∑
j : j

k
∈P

Πk,j(z ,w). (10)

The main problem is to relate the asymptotic properties of
Π|kP(z ,w) to the geometry of H−1(P).



Allowed region, forbidden region and the interface

Define the allowed, resp. forbidden regions by

AP := {z ∈ M : H(z) ∈ P}, FP := M\AP .

The main idea is that Π|kP(z , z) has standard asymptotics in the
allowed region AP and exponentially decaying asymptotics in the
forbidden region FP . The interface is

∂AP = ∂FP .

In a special case, Ross-Singer found the scaling limit of ΠkP(z , z)
for z in a transition region between them near the ‘interface’.



Allowed vs Forbidden

Allowed: the flat top; Forbidden the flat bottom.
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Complexified C∗-action and Agmon distance

The complexification of the holomorphic Hamiltonian T action is
denoted by

τ : C∗ ×M → M, τ∗e iϕω = ω. (11)

The C∗ action is the combined Hamilton flow– gradient flow of the
Hamiltonian H = µ generating the S1 action.

The exponentially decaying asymptotics in the forbidden region is
governed by the ‘action’ bE (z) from z to H−1(E ). We define bE by

bE (z) = −EτE (z) +

∫ τE (z)

0

[
H(e−σ/2 · z)

]
· dσ . (12)

The integral is over the gradient flow line from z to H−1(E ).



Asymptotics of Equivariant Bergman kernels

The following asymptotics are quite simple in the S1 case:

Theorem
If | jk − E | ≤ C log k√

k
, then

Πk,j(z , z) ∼ kn−1 1√
detϕ′′ρρ

A0 + o(kn−1), z ∈ H−1(E ).

For z /∈ E , let e−τE (z)/2 · z ∈ H−1(E ). Then,

Πk,j(z , z) ∼ kn−1e−kbE (z) 1√
detϕ′′ρρ

A0 + o(kn−1), z ∈ H−1(E ).

Here, bE is the action integral over the gradient line of H from z
to H−1(E ).

Very simple: just use equivariance. Generalizations to non-abelian
groups: X. Ma, R. Paoletti.



Partial Bergman kernel asymptotics

Let P = [E ,Hmax] where Hmax is the maximum value of H or the
form [Hmin,E ] where Hmin is the minimum value. It is only
notationally more complicated to consider intervals [E1,E2] with
E1 > Hmin,E2 < Hmax.

Theorem
The density of states of the partial Bergman kernel is given by the
asymptotic formulas:

Π|kP(z , z) ∼

 c0 + c1k−1 + c2k−2 + · · · , for z ∈ H−1(P),

k−me−kbE (z)
[
c0(z) + O(k−1)

]
, for z ∈ X +

1 ,

where c0 ∈ C∞(X +
1 ), and bE is defined in (12). Furthermore, the

remainder estimates are uniform on compact subsets of the basin
X +

1 of attraction of the minimum.



Smoothed partial Bergman kernel asymptotics

The smoothed out interval sums have the form, with ρ ∈ S(R),∑
j ρ( j

k − E )Πk,j(z , z) =
∫
R ρ̂(t)e−iE tΠk(e it/kz , z)dt. (13)

Theorem

∑
j

ρ(
j

k
−E ))Πk,j(z , z) ∼

 c0 + c1k−1 + c2k−2 + · · · , z ∈ H−1(P),

k−me−kbE (z)
[
c0(z) + O(k−1)

]
, z ∈ X +

1 ,

where the remainder estimates are uniform on compact subsets of
the big stratum X +

1 (big Morse cell).



Interface Asymptotics

The interface asymptotics at a level E involve all of the individual
weight Bergman kernels (8) where | jk − E | < C log k

k .

Theorem
For z so that

√
k(H(z)− ε) is bounded, , k−nΠ|kP(z , z) has a

distributional expansion on X whose leading order term is

k−nΠ|kP(z , z) =
1√

2π|ξH(z)|2

∫ √k(H(z)−ε)

−∞
e
− t2

2|ξH (z)|2 dt + O(k−
1
2 ).

ξH = Hamilton v.f. of H.



Smoothed interface asymptotics

The smoothed out interface sums have the form, with ρ ∈ S(R),∑
j ρ(
√

k( j
k − E ))Πk,j(z0 + u√

k
, z0 + u√

k
)

=
∫
R ρ̂(t)e−iE

√
ktΠk(e it/

√
kz , z)dt.

(14)

Theorem
Let µ(z0) = E . Then,∑

j ρ(
√

k( j
k − E ))Πk,j(z0 + u√

k
, z0 + u√

k
)

=
∫
R ρ̂(t)e itEϕ

′
ρ(z0)u−ϕ′′ρρ(z0)t2

dt + O( 1√
k

).



Sketch of proof

Using the Bouet-de-Monvel-Sjostrand parametrix,∑
j

f (
√

k(
j

k
− E ))Πk,j(z , z) =

∫
R

f̂ (t)e−iE
√
ktΠk(e it/

√
kz , z)dt

= km

∫ ∞
−∞

f̂ (t)e−it(
√
kE)ekψ(e it/(2

√
k)·z,e−it/(2

√
k)·z)−kϕ(z)Ak(e it/2

√
kz , z)

dt

2π

+km

∫ ∞
−∞

f̂ (t)e−it(
√
kE)Rk(e it/2

√
kz , z)

dt

2π

Since Rk ∈ k−∞C∞(M ×M), the second term is O(k−∞). We

note that t → Πk(e it/
√
kz , z) is 2π

√
k-periodic (similarly for the

parametrix and remainder terms), so the integrals converge when
f̂ ∈ L1(Rd).



Continuation

Let

Ψ(τ, z) = −τ(
√

kE ) + kψ(eτ/2
√
k · z , e τ̄/2

√
k · z)− kϕ(z),

so the phase is Ψ(it). If ϕ(z) is real analytic, then Ψ(τ) is
holomorphic when =(τ) is small enough. If ϕ is only smooth, then
Ψ(τ) is an almost analytic extension of Ψ|R.

If z = eβ/(
√
k)z0 with H(z0) = E . Then as k →∞,

Ψ(τ, eβ/(
√
k)z0) = −τ(

√
kE )+k((ψ(e(τ/2+β)/

√
k ·z0, e

(τ̄ /2+β)/
√
k ·z0)

−ϕ(eβ/
√
k · z0)

=
1

2
((τ/2 + β)2 − β2)∂2

ρϕ(z0) + g3(z , τ, β),

where
g3 = O(k−1/2(|β|3 + |τ |3)).



Completion of proof

If f̂ ∈ Cc(R), using the Plancherel theorem and the Taylor
expansion above, the PBK is

km

∫ ∞
−∞

f̂ (t)
[
e

1
2

((it/2+β)2−β2)∂2
ρϕ(z0)eg3dt

]
(1 + O(k−1))

= km

∫ ∞
−∞

f̂ (t)
[
e

1
2

((it/2+β)2−β2)∂2
ρϕ(z0)dt

]
+ O(km− 1

2 ))

= km

∫ ∞
−∞

f (x)

[∫ ∞
−∞

e−itx+ 1
2

((it/2+β)2−β2)∂2
ρϕ(z0)dt

]
dx

2π
+O(km− 1

2 ))

= km

∫ ∞
−∞

f (x)

√
2

π∂2
ρϕ(z0)

e
−

(2x−β∂2
ρϕ(z0))2

2∂2
ρϕ(z0) dx + O(km−1/2))


