Partial Bergman kernels and the quantum Hall effect

Steve Zelditch; joint work with Peng Zhou

Boutet de Monvel Memorial Conference, June 23, 2016

Bergman kernels on positive line bundles

This talk concerns the space $H^{0}\left(M, L^{k}\right)$ of holomorphic sections of the kth power of a positive Hermitian holomorphic line bundle $L \rightarrow M$ over a Kähler manifold (M, ω). The Hermitian metric is denoted by h and in a local frame e_{L} it is denoted by $\left|e_{L}(z)\right|_{h}^{2}=e^{-\varphi}$. Positive Hermitian means that $i \partial \bar{\partial} \log h=\omega$ is a Kähler form. The key object in this talk is the orthogonal
projection,

$$
\Pi_{h^{k}}: L^{2}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)
$$

with respect to the inner product

$$
\left\langle s_{1}, s_{2}\right\rangle:=\int_{M}\left(s_{1}(z), s_{2}(z)\right)_{h^{k}} \frac{\omega^{m}}{m!} .
$$

The Schwartz kernel of $\Pi_{h^{k}}(z, w)$ relative to the volume form $\frac{\omega^{m}}{m!}$ is known as the semi-classcial Bergman kernel or Szego kernel.

Boutet de Monvel-Sjostrand parametrix

The projections $\Pi_{h^{k}}$ onto $H^{0}\left(M, L^{k}\right)$ lift to projections $\hat{\Pi}_{h_{k}}$ on the principal S^{1} bundle $\partial D_{h}^{*} \subset L^{*}$ where $D_{h}^{*}=\left\{(z, \lambda):|\lambda|_{h_{z}}<1\right\}$. This is a strictly pseudo-convex domain in L^{*}. The sum $\Pi=\sum_{k \geq 0} \hat{\Pi}_{h_{k}}$ is the true Szego kernel

$$
\hat{\Pi}: L^{2}\left(\partial D_{h}^{*}\right) \rightarrow H^{2}\left(\partial D_{h}^{*}\right)
$$

onto boundary values of holomorphic functions on D_{h}^{*}
Near the diagonal in $\partial D_{h}^{*} \times \partial D_{h}^{*}$, the Boutet de Monvel-Sjostrand parametrix is:

$$
\begin{equation*}
\hat{\Pi}(x, y)=\int_{0}^{\infty} e^{-\sigma \psi(x, y)} \chi(x, y) s(x, y, \sigma) d \sigma+\hat{R}(x, y) \tag{1}
\end{equation*}
$$

Here, $\chi(x, y)$ is a smooth cutoff to the diagonal; $s(x, y, \sigma)$ is a semi-classical symbol of order $m=\operatorname{dim}_{\mathbb{C}} M$.

The phase

When the Kähler metric ω is real analytic, the phase ψ is constructed from the Kähler potential $\varphi(z)$ of ω_{0} by

$$
\begin{equation*}
\psi(x, y)=\psi((z, \lambda),(w, \mu))=1-\lambda \bar{\mu} e^{\varphi(z, \bar{w})} \tag{2}
\end{equation*}
$$

where $\varphi(z, \bar{w})$ is the analytic extension of $\varphi(z)=\varphi(z, \bar{z})$ into the complexification $M \times \bar{M}$ of M. Also,

$$
\begin{equation*}
s \sim \sum_{n=0}^{\infty} \sigma^{m-n} s_{n}(x, y) \tag{3}
\end{equation*}
$$

is an analytic symbol in the sense of Boutet de Monvel. Finally, the remainder term $\hat{R}(x, y)$ is real analytic in a neighborhood of the diagonal. If ω is only C^{∞} then $\psi(z, w)$ is defined by an almost-analytic extension and the remainder R is C^{∞}.

Partial Bergman kernels

Our interest is not in the full Bergman kernel but in the partial Bergman kernels (PBK's): Partial Bergman kernels

$$
\begin{equation*}
\Pi_{k, \mathcal{S}_{k}}: L^{2}\left(M, L^{k}\right) \rightarrow \mathcal{S}_{k} \subset H^{0}\left(M, L^{k}\right) \tag{4}
\end{equation*}
$$

are orthogonal projections onto proper subspaces \mathcal{S}_{k} of the holomorphic sections of L^{k}. For certain sequences \mathcal{S}_{k} of subspaces, the partial density of states $k^{-m} \Pi_{k, \mathcal{S}_{k}}(z, z)$ has an asymptotic expansion as $k \rightarrow \infty$ which roughly gives the probability density that a quantum state from \mathcal{S}_{k} is at the point z. If $\left\{s_{k, j}\right\}$ is an ONB for \mathcal{S}_{k}, then

$$
\Pi_{k, \mathcal{S}_{k}}(z, z)=\sum_{j=1}^{\operatorname{dim} \mathcal{S}_{k}}\left|s_{k, j}(z)\right|_{h^{k}}^{2}
$$

Here and henceforth, the value on the diagonal means the metric contraction.

Sections vanishing to high order on a hypersurface

A motivating example: Let $Y \subset M$ be a complex hypersurface (divisor). Let

$$
\mathcal{S}_{k, t}^{Y}:=H^{0}\left(X, \mathcal{O}\left(L^{k}\right) \otimes \mathcal{I}_{Y}^{t k}\right),
$$

holomorphic sections vanishing to order $t k$ on Y.
Define the orthogonal projections

$$
\begin{equation*}
\Pi_{k}^{Y, t}(z, w): L^{2}\left(X, L^{k}\right) \rightarrow H^{0}\left(X, \mathcal{O}\left(L^{k}\right) \otimes \mathcal{I}_{Y}^{t k}\right) \tag{5}
\end{equation*}
$$

Can one find the asymptotics $\Pi_{k}^{Y, t}(z, z)$?
It is "obvious" that $\Pi_{k}^{Y, t}(z, z)$ should be exponentially decaying on Y and in some tubular neighborhood of Y. But the details are not known except in special cases (Toric (M, L, h)).

A motivating problem from the QHE

Other examples of Partial Bergman kernels arise in the quantum Hall effect.
Suppose $\Omega \subset M$ is a domain in a kahler manifold M^{m} of dimension m. We would like to fill it up with quantum states from $H^{0}\left(M, L^{k}\right)$, with no 'spill-over' into $M \backslash \Omega$. If the states are $\left\{s_{j}^{k}\right\}_{j=1}^{d_{k, \Omega}}$ then heuristically we want

$$
k^{-m} \sum_{j=1}^{d_{k, \Omega}}\left|s_{j}^{k}(z)\right|_{h^{k}} \simeq C_{m} k^{m} \mathbf{1}_{\Omega}(z)
$$

Here, $\mathbf{1}_{\Omega}$ is the characteristic function of Ω. Also, $d_{k, \Omega}$ is the dimension of the relevant subspace.

Of course, this is not literally possible. How close can we come? What does the minimal 'spill-over look like".

Spectral theory of Toeplitz operators

If $\hat{H}_{k}: H^{0}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)$ is a self-adjoint Toeplitz operator such as $\hat{H}_{k}=\Pi_{h^{k}} H \Pi_{h^{k}}$, then one might define \mathcal{S}_{k} to be a spectral subspace of \hat{H}_{k}. In terms of

$$
\hat{H}_{k} s_{k, j}=\mu_{k, j} s_{k, j}
$$

one may define

$$
\mathcal{S}_{k}=\operatorname{Span}\left\{\mathrm{s}_{\mathrm{k}, \mathrm{j}}: \mu_{\mathrm{k}, \mathrm{j}} \in\left[\mathrm{E}_{1}, \mathrm{E}_{2}\right]\right\} .
$$

The corresponding partial Bergman kernel is the orthogonal projection

$$
\Pi_{k, \mathcal{S}_{k}}=\mathbf{1}_{\left[E_{1}, E_{2}\right]}\left(\hat{H}_{k}\right)
$$

to this subspace.

The answer in the S^{1}-invariant 1D case

The 'limit shape' of the interface is an complete Gaussian:

There is an allowed region where the PBK is almost 1 and the forbidden region where it is almost zero. The transition region has width $O\left(\frac{1}{\sqrt{k}}\right)$. This picture is in most standard texts on QHE.

Toric Kähler manifolds

The simplest partial Bergman kernels arise from toric Kähler manifolds M^{m}. Then $H^{0}\left(M, L^{k}\right)$ is spanned by monomials z^{α} where $\alpha \in k P \cap \mathbb{Z}^{m}$ is a lattice point in the kth dilate of the polytope P corresponding to M, i.e. the image

$$
\mu: M \rightarrow P
$$

under the moment map. Subspaces may be defined by choosing sub-polytopes $P^{\prime} \subset P$ which are 'Delzant'. The corresponding z^{α} 's vanish to high order on the divisor at infinity.

- Shiffman -Zelditch (2004) In the allowed region $\mathcal{A}:=\mu^{-1}\left(P^{\prime}\right)$, the PBK asymptotics are the same as for the full Bergman kernel. In the forbidden region $\mathcal{F}:=M \backslash \mu^{-1}\left(P^{\prime}\right)$, they are exponentially decaying. The decay rate is an explicit Agmon type function $b_{P^{\prime}}$.
- (2014) Pokorny-Singer: Generalized the allowed asymptotics of (Sh-Z) to any toric Kahler manifold and toric divisor. Main novelty: distributional expansion of PBK on $\partial \mathcal{A}$.

Density of states for a toric sub-polytope PBK

Figure: Gaussian decay from allowed to forbidden

S^{1}-invariant Kähler manifolds

Ross-Singer generalized the toric results to Kähler manifolds with a holomorphic Hamiltonian S^{1} symmetry, with a hypersurface $Y \subset M^{S^{1}}$ contained in the fixed point set (critical point set of the Hamiltonian).

- (2014) Ross-Singer: Discovered the incomplete Gaussian interface asymptotics for S^{1}-invariant (M, L, h) for PBK's onto sections vanishing to order $t k$ on an S^{1}-invariant hypersurface Y.
- (2016) (Peng Zhou-S. Z.) General Hamiltonian S^{1}-invariant (M, L, h) with no assumptions on fixed point set; exponential decay rate and interface asymptotics.

Many of the results (in particular the interface asymptotics) are valid for any Hamiltonian (in progress).

Filling domains with quantum states

If the domain Ω has the form $E_{1} \leq H \leq E_{2}$ for some $H: M \rightarrow \mathbb{R}$, then the eigensections (i.e. partial Bergman kernel) for the spectral subspace of \hat{H}_{k} with eigenvalues in $\left[E_{1}, E_{2}\right]$ will fill it.

Another approach is to study the spectral theory of $\Pi_{h^{k}} \mathbf{1}_{\Omega} \Pi_{h^{k}}$. R. Berman proved a Szego limit theorem for the eigenvalues of this operator. No results yet on interface asymptotics.

Shiffman-S.Z. and P. Zhou- S.Z. use the Boutet-de-Monvel-Sjostrand parametrix to obtain simple and accurate results.

Hamiltonian-holomorphic S^{1} actions on Kaehler manifolds

We now describe the results in the S^{1} case. The seting consists of a positive Hermitian holomorphic line bundle $(L, h) \rightarrow(M, \omega, J)$ over a Kähler manifold of complex dimension m carrying a Hamiltonian holomorphic S^{1} action

$$
\exp i \theta \xi_{H}: \mathbb{T} \times M \rightarrow M, \quad \iota_{\xi_{H}} \omega=d H
$$

where $H: M \rightarrow \mathbb{R}$ is the Hamiltonian. Here $\mathbb{T}=S^{1}$.
Holomorphic means that for each $\theta, \exp i \theta \xi_{H}$ is a holomorphic map. It follows that each is an isometry of $g(X, Y)=\omega(X, J Y)$.

It was observed by T . Frankel that a holomorphic S^{1} action is always Hamiltonian if its fixed point set is non-empty.

Model examples on \mathbb{C}^{m+1}

Standard S^{1} actions on \mathbb{C}^{m+1} have the form

$$
e^{i \theta} \cdot\left[Z_{0}, \ldots, Z_{m}\right]=\left[e^{i b_{0} \theta} Z_{0}, \ldots, e^{i b_{m} \theta} Z_{m}\right], \quad b_{j} \in \mathbb{Z}
$$

Extreme cases:

$$
\text { (i) } e^{i \theta} \cdot\left[Z_{0}, \ldots, Z_{m}\right]=\left[e^{i \theta} Z_{0}, Z_{1}, \ldots, Z_{m}\right] \text {, Hamiltonian }\left|Z_{0}\right|^{2}
$$

with fixed point manifold $Z_{0}=0$;
(ii) $e^{i \theta} \cdot\left[Z_{0}, \ldots, Z_{m}\right]=\left[e^{i \theta} Z_{0}, \ldots, e^{i \theta} Z_{m}\right]$, Hamiltonian $\sum_{j=1}^{m}\left|Z_{j}\right|^{2}$
with isolated fixed point $\{0\}$.

Model examples on $\mathbb{C P}^{m}$

Standard S^{1} actions on $\mathbb{C P}^{m}$ arise from subgroups $S^{1} \subset S U(m+1)$ of the form

$$
e^{i \theta} \cdot\left[Z_{0}, \ldots, Z_{m}\right]=\left[Z_{0}, e^{i b_{1} \theta} Z_{1}, \ldots, e^{i b_{m} \theta} Z_{m}\right], \quad b_{j} \in \mathbb{Z}
$$

With no loss of generality it is assumed that $b_{0}=0$. When $b_{j} \neq b_{k}$ when $\mathrm{j} \neq \mathrm{k}$, the action has $m+1$ isolated fixed points, $P_{j}=\left[0, \ldots, 0, z_{j}, 0, \ldots, 0\right]$. The weights at P_{j} are $\left\{b_{j}-b_{i}\right\}_{j \neq i}$. The Hamiltonian (moment map) is

$$
H_{\vec{b}}\left(\left[Z_{0}: \cdots: Z_{m}\right]\right)=\frac{b_{1}\left|Z_{1}\right|^{2}+\cdots+b_{m}\left|Z_{m}\right|^{2}}{|Z|^{2}}
$$

S^{1} invariant Projective hypersurfaces

Example studied by F . Kirwan: the cubic hypersurface $X \subset \mathbb{C P}^{4}$,

$$
x^{3}+y^{3}+z^{3}=u^{2} v
$$

and let \mathbb{C}^{*} act on X via

$$
t \cdot[x, y, z, u, v]=\left[t^{-1} x, t^{-1} y, t^{-1} z, t^{-3} u, t^{3} v\right]
$$

Then $X^{\mathbb{T}}$ has three fixed point components,

$$
\begin{array}{cl}
F_{1}=\{[0,0,0,1,0]\}, & F_{2}=\left\{[x, y, z, 0,0]: x^{3}+y^{3}+z^{3}=0\right\} \\
& F_{3}=\{[0,0,0,0,1]\}
\end{array}
$$

of which two $\left(F_{1}, F_{3}\right)$ are isolated fixed points and F_{2} is a hypersurface in X, i.e. a curve. The point $P=[0,0,0,0,1]$ is singular.

Ruled surfaces

Another setting of S^{1} invariant situation is ruled surfaces.
Let M be a Kähler manifold and let $L \rightarrow M$ be a holomorphic line bundle. L carries a natural \mathbb{C}^{*} action. Projectivize each line $L_{z} \rightarrow \mathbb{P} L_{z} \simeq \mathbb{C P}^{1}$ to get $\mathbb{P} L$. It still carries a \mathbb{C}^{*} action. Equip the $\mathbb{C P}^{1}$ bundle with an S^{1} invariant metric. Then the total space is an S^{1}-invariant kahler manifold with fixed point components $\simeq M$ corresponding to $0, \infty$ on $\mathbb{C P}$.

Linearization (quantization) of the S^{1} action

Let h be the Hermitian metric with $i \partial \bar{\partial} \log h=\omega$. If $c_{1}(L)=[\omega]$, then the Hamiltonian S^{1} action preserves (L, h) and can be 'quantized' or linearized to give a representation of \mathbb{T} on the spaces $H^{0}\left(X, L^{k}\right)$ of holomorphic sections of the tensor powers L^{k}. The infinitesimal generator acts on a section by

$$
\begin{equation*}
\xi \cdot s=\left(\nabla_{\xi}+2 \pi i k H\right) s=: \hat{H}_{k} s . \tag{6}
\end{equation*}
$$

Here, ∇ is the Chern connection.
(6) may be integrated to define a unitary representation of \mathbb{T}

$$
U_{k}(\theta)=e^{i k \theta \hat{H}_{k}}: \mathbb{T} \times H^{0}\left(M, L^{k}\right) \rightarrow H^{0}\left(M, L^{k}\right)
$$

on, equipped with the L^{2} norm $\operatorname{Hilb}_{h^{k}}$ induced by the Hermitian metric h.

Weight decomposition of holomorphic sections and equivariant Bergman kernels

Define the weight spaces by

$$
\begin{align*}
& V_{k}(j)=\left\{s \in H^{0}\left(M, L^{k}\right): U_{k}(\theta) s=e^{i j \theta} s\right\} \\
& =\left\{s \in H^{0}\left(M, L^{k}\right): \hat{H}_{k} s=\frac{j}{k} s\right\} . \tag{7}
\end{align*}
$$

The associated eigenspace projections

$$
\begin{equation*}
\Pi_{k, j}(z, w): H^{0}\left(M, L^{k}\right) \rightarrow V_{k}(j) \tag{8}
\end{equation*}
$$

are called "equivariant Bergman kernels". They have been studied in detail by Shiffman-S.Z. (toric), X.Ma-W. Zhang (general compact G), R. Paoletti (general G).

Partial Bergman kernels

The Hamiltonian is a Bott-Morse function $H: M \rightarrow\left[E_{-}, E_{+}\right]$ where $E_{ \pm}=\max / \min H$. Let $P \subset\left(E_{-}, E_{+}\right)$be a proper closed interval. Define the corresponding subspace

$$
\begin{equation*}
\mathcal{H}_{k, P}:=\bigoplus_{j: \frac{j}{k} \in P} V_{k}(j) \tag{9}
\end{equation*}
$$

and partial Bergman kernels

$$
\begin{equation*}
\Pi_{\mid k P}(z, w):=\sum_{j: \frac{j}{k} \in P} \Pi_{k, j}(z, w) \tag{10}
\end{equation*}
$$

The main problem is to relate the asymptotic properties of $\Pi_{\mid k P}(z, w)$ to the geometry of $H^{-1}(P)$.

Allowed region, forbidden region and the interface

Define the allowed, resp. forbidden regions by

$$
\mathcal{A}_{P}:=\{z \in M: H(z) \in P\}, \quad \mathcal{F}_{P}:=M \backslash \mathcal{A}_{P} .
$$

The main idea is that $\Pi_{\mid k P}(z, z)$ has standard asymptotics in the allowed region \mathcal{A}_{P} and exponentially decaying asymptotics in the forbidden region \mathcal{F}_{P}. The interface is

$$
\partial \mathcal{A}_{P}=\partial \mathcal{F}_{P}
$$

In a special case, Ross-Singer found the scaling limit of $\Pi_{k P}(z, z)$ for z in a transition region between them near the 'interface'.

Allowed vs Forbidden

Allowed: the flat top; Forbidden the flat bottom.

Complexified \mathbb{C}^{*}-action and Agmon distance

The complexification of the holomorphic Hamiltonian \mathbb{T} action is denoted by

$$
\begin{equation*}
\tau: \mathbb{C}^{*} \times M \rightarrow M, \quad \tau_{e \varphi}^{*} \omega=\omega \tag{11}
\end{equation*}
$$

The \mathbb{C}^{*} action is the combined Hamilton flow- gradient flow of the Hamiltonian $H=\mu$ generating the S^{1} action.

The exponentially decaying asymptotics in the forbidden region is governed by the 'action' $b_{E}(z)$ from z to $H^{-1}(E)$. We define b_{E} by

$$
\begin{equation*}
b_{E}(z)=-E \tau_{E}(z)+\int_{0}^{\tau_{E}(z)}\left[H\left(e^{-\sigma / 2} \cdot z\right)\right] \cdot d \sigma \tag{12}
\end{equation*}
$$

The integral is over the gradient flow line from z to $H^{-1}(E)$.

Asymptotics of Equivariant Bergman kernels

The following asymptotics are quite simple in the S^{1} case:
Theorem
If $\left|\frac{j}{k}-E\right| \leq \frac{C \log k}{\sqrt{k}}$, then

$$
\Pi_{k, j}(z, z) \sim k^{n-1} \frac{1}{\sqrt{\operatorname{det} \varphi_{\rho \rho}^{\prime \prime}}} A_{0}+o\left(k^{n-1}\right), \quad z \in H^{-1}(E)
$$

For $z \notin E$, let $e^{-\tau_{E}(z) / 2} \cdot z \in H^{-1}(E)$. Then,

$$
\Pi_{k, j}(z, z) \sim k^{n-1} e^{-k b_{E}(z)} \frac{1}{\sqrt{\operatorname{det} \varphi_{\rho \rho}^{\prime \prime}}} A_{0}+o\left(k^{n-1}\right), \quad z \in H^{-1}(E)
$$

Here, b_{E} is the action integral over the gradient line of H from z to $H^{-1}(E)$.
Very simple: just use equivariance. Generalizations to non-abelian groups: X. Ma, R. Paoletti.

Partial Bergman kernel asymptotics

Let $P=\left[E, H_{\max }\right]$ where $H_{\max }$ is the maximum value of H or the form $\left[H_{\min }, E\right.$] where $H_{\text {min }}$ is the minimum value. It is only notationally more complicated to consider intervals $\left[E_{1}, E_{2}\right]$ with $E_{1}>H_{\text {min }}, E_{2}<H_{\text {max }}$.

Theorem

The density of states of the partial Bergman kernel is given by the asymptotic formulas:
$\Pi_{\mid k P}(z, z) \sim \begin{cases}c_{0}+c_{1} k^{-1}+c_{2} k^{-2}+\cdots, & \text { for } z \in H^{-1}(P), \\ k^{-m} e^{-k b_{E}(z)}\left[c_{0}(z)+O\left(k^{-1}\right)\right], & \text { for } z \in X_{1}^{+},\end{cases}$
where $c_{0} \in \mathcal{C}^{\infty}\left(X_{1}^{+}\right)$, and b_{E} is defined in (12). Furthermore, the remainder estimates are uniform on compact subsets of the basin X_{1}^{+}of attraction of the minimum.

Smoothed partial Bergman kernel asymptotics

The smoothed out interval sums have the form, with $\rho \in \mathcal{S}(\mathbb{R})$,

$$
\begin{equation*}
\sum_{j} \rho\left(\frac{j}{k}-E\right) \Pi_{k, j}(z, z)=\int_{\mathbb{R}} \hat{\rho}(t) e^{-i E t} \Pi_{k}\left(e^{i t / k} z, z\right) d t \tag{13}
\end{equation*}
$$

Theorem

$\left.\sum_{j} \rho\left(\frac{j}{k}-E\right)\right) \Pi_{k, j}(z, z) \sim\left\{\begin{array}{l}c_{0}+c_{1} k^{-1}+c_{2} k^{-2}+\cdots, z \in H^{-1}(P), \\ k^{-m} e^{-k b_{E}(z)}\left[c_{0}(z)+O\left(k^{-1}\right)\right], z \in X_{1}^{+},\end{array}\right.$
where the remainder estimates are uniform on compact subsets of the big stratum X_{1}^{+}(big Morse cell).

Interface Asymptotics

The interface asymptotics at a level E involve all of the individual weight Bergman kernels (8) where $\left|\frac{j}{k}-E\right|<\frac{C \log k}{k}$.

Theorem

For z so that $\sqrt{k}(H(z)-\epsilon)$ is bounded, , $k^{-n} \Pi_{\mid k P}(z, z)$ has a distributional expansion on X whose leading order term is
$k^{-n} \Pi_{\mid k P}(z, z)=\frac{1}{\sqrt{2 \pi\left|\xi_{H}(z)\right|^{2}}} \int_{-\infty}^{\sqrt{k}(H(z)-\epsilon)} e^{-\frac{t^{2}}{2\left|\xi_{H}(z)\right|^{2}}} d t+O\left(k^{-\frac{1}{2}}\right)$.
$\xi_{H}=$ Hamilton v.f. of H.

Smoothed interface asymptotics

The smoothed out interface sums have the form, with $\rho \in \mathcal{S}(\mathbb{R})$,

$$
\begin{align*}
& \sum_{j} \rho\left(\sqrt{k}\left(\frac{j}{k}-E\right)\right) \Pi_{k, j}\left(z_{0}+\frac{u}{\sqrt{k}}, z_{0}+\frac{u}{\sqrt{k}}\right) \tag{14}\\
& =\int_{\mathbb{R}} \hat{\rho}(t) e^{-i E \sqrt{k} t} \Pi_{k}\left(e^{i t / \sqrt{k}} z, z\right) d t .
\end{align*}
$$

Theorem
Let $\mu\left(z_{0}\right)=E$. Then,

$$
\begin{aligned}
& \sum_{j} \rho\left(\sqrt{k}\left(\frac{j}{k}-E\right)\right) \Pi_{k, j}\left(z_{0}+\frac{u}{\sqrt{k}}, z_{0}+\frac{u}{\sqrt{k}}\right) \\
& =\int_{\mathbb{R}} \hat{\rho}(t) e^{i t E \varphi_{\rho}^{\prime}\left(z_{0}\right) u-\varphi_{\rho \rho}^{\prime \prime}\left(z_{0}\right) t^{2}} d t+O\left(\frac{1}{\sqrt{k}}\right) .
\end{aligned}
$$

Sketch of proof

Using the Bouet-de-Monvel-Sjostrand parametrix,

$$
\begin{aligned}
& \sum_{j} f\left(\sqrt{k}\left(\frac{j}{k}-E\right)\right) \Pi_{k, j}(z, z)=\int_{\mathbb{R}} \hat{f}(t) e^{-i E \sqrt{k} t} \Pi_{k}\left(e^{i t / \sqrt{k}} z, z\right) d t \\
&=k^{m} \int_{-\infty}^{\infty} \hat{f}(t) e^{-i t(\sqrt{k} E)} e^{k \psi\left(e^{i t /(2 \sqrt{k})} \cdot z, e^{-i t /(2 \sqrt{k})} \cdot z\right)-k \varphi(z)} A_{k}\left(e^{i t / 2 \sqrt{k}} z, z\right) \frac{d t}{2 \pi} \\
& \quad+k^{m} \int_{-\infty}^{\infty} \hat{f}(t) e^{-i t(\sqrt{k} E)} R_{k}\left(e^{i t / 2 \sqrt{k}} z, z\right) \frac{d t}{2 \pi}
\end{aligned}
$$

Since $R_{k} \in k^{-\infty} C^{\infty}(M \times M)$, the second term is $O\left(k^{-\infty}\right)$. We note that $t \rightarrow \Pi_{k}\left(e^{i t / \sqrt{k}} z, z\right)$ is $2 \pi \sqrt{k}$-periodic (similarly for the parametrix and remainder terms), so the integrals converge when $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$.

Continuation

Let

$$
\Psi(\tau, z)=-\tau(\sqrt{k} E)+k \psi\left(e^{\tau / 2 \sqrt{k}} \cdot z, e^{\bar{\tau} / 2 \sqrt{k}} \cdot z\right)-k \varphi(z)
$$

so the phase is $\Psi(i t)$. If $\varphi(z)$ is real analytic, then $\Psi(\tau)$ is holomorphic when $\Im(\tau)$ is small enough. If φ is only smooth, then $\Psi(\tau)$ is an almost analytic extension of $\left.\Psi\right|_{\mathbb{R}}$.
If $z=e^{\beta /(\sqrt{k})} z_{0}$ with $H\left(z_{0}\right)=E$. Then as $k \rightarrow \infty$,
$\Psi\left(\tau, e^{\beta /(\sqrt{k})} z_{0}\right)=-\tau(\sqrt{k} E)+k\left(\left(\psi\left(e^{(\tau / 2+\beta) / \sqrt{k}} \cdot z_{0}, e^{(\bar{\tau} / 2+\beta) / \sqrt{k}} \cdot z_{0}\right)\right.\right.$

$$
\begin{gathered}
-\varphi\left(e^{\beta / \sqrt{k}} \cdot z_{0}\right) \\
=\frac{1}{2}\left((\tau / 2+\beta)^{2}-\beta^{2}\right) \partial_{\rho}^{2} \varphi\left(z_{0}\right)+g_{3}(z, \tau, \beta)
\end{gathered}
$$

where

$$
g_{3}=O\left(k^{-1 / 2}\left(|\beta|^{3}+|\tau|^{3}\right)\right)
$$

Completion of proof

If $\hat{f} \in C_{c}(\mathbb{R})$, using the Plancherel theorem and the Taylor expansion above, the PBK is

$$
\begin{gathered}
k^{m} \int_{-\infty}^{\infty} \hat{f}(t)\left[e^{\frac{1}{2}\left((i t / 2+\beta)^{2}-\beta^{2}\right) \partial_{\rho}^{2} \varphi\left(z_{0}\right)} e^{g_{3}} d t\right]\left(1+O\left(k^{-1}\right)\right) \\
\left.=k^{m} \int_{-\infty}^{\infty} \hat{f}(t)\left[e^{\frac{1}{2}\left((i t / 2+\beta)^{2}-\beta^{2}\right) \partial_{\rho}^{2} \varphi\left(z_{0}\right)} d t\right]+O\left(k^{m-\frac{1}{2}}\right)\right) \\
\left.=k^{m} \int_{-\infty}^{\infty} f(x)\left[\int_{-\infty}^{\infty} e^{-i t x+\frac{1}{2}\left((i t / 2+\beta)^{2}-\beta^{2}\right) \partial_{\rho}^{2} \varphi\left(z_{0}\right)} d t\right] \frac{d x}{2 \pi}+O\left(k^{m-\frac{1}{2}}\right)\right) \\
\left.=k^{m} \int_{-\infty}^{\infty} f(x) \sqrt{\frac{2}{\pi \partial_{\rho}^{2} \varphi\left(z_{0}\right)}} e^{-\frac{\left(2 x-\beta \partial_{\rho}^{2} \varphi\left(z_{0}\right)\right)^{2}}{2 \partial_{\rho}^{2} \varphi\left(z_{0}\right)}} d x+O\left(k^{m-1 / 2}\right)\right)
\end{gathered}
$$

