Partial Bergman kernels and the quantum Hall effect

Steve Zelditch; joint work with Peng Zhou

Boutet de Monvel Memorial Conference, June 23, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bergman kernels on positive line bundles

This talk concerns the space $H^0(M, L^k)$ of holomorphic sections of the kth power of a positive Hermitian holomorphic line bundle $L \to M$ over a Kähler manifold (M, ω) . The Hermitian metric is denoted by h and in a local frame e_L it is denoted by $|e_L(z)|_h^2 = e^{-\varphi}$. Positive Hermitian means that $i\partial\bar{\partial} \log h = \omega$ is a Kähler form. The key object in this talk is the orthogonal

projection,

$$\Pi_{h^k}: L^2(M, L^k) \to H^0(M, L^k)$$

with respect to the inner product

$$\langle s_1, s_2 \rangle := \int_M (s_1(z), s_2(z))_{h^k} \frac{\omega^m}{m!}.$$

The Schwartz kernel of $\Pi_{h^k}(z, w)$ relative to the volume form $\frac{\omega^m}{m!}$ is known as the semi-classcial Bergman kernel or Szego kernel.

Boutet de Monvel-Sjostrand parametrix

The projections Π_{h^k} onto $H^0(M, L^k)$ lift to projections $\hat{\Pi}_{h_k}$ on the principal S^1 bundle $\partial D_h^* \subset L^*$ where $D_h^* = \{(z, \lambda) : |\lambda|_{h_z} < 1\}$. This is a strictly pseudo-convex domain in L^* . The sum $\Pi = \sum_{k \ge 0} \hat{\Pi}_{h_k}$ is the true Szego kernel

$$\hat{\Pi}: L^2(\partial D_h^*) \to H^2(\partial D_h^*)$$

onto boundary values of holomorphic functions on D_h^*

Near the diagonal in $\partial D_h^* \times \partial D_h^*$, the Boutet de Monvel-Sjostrand parametrix is:

$$\hat{\Pi}(x,y) = \int_0^\infty e^{-\sigma\psi(x,y)} \chi(x,y) s(x,y,\sigma) d\sigma + \hat{R}(x,y).$$
(1)

Here, $\chi(x, y)$ is a smooth cutoff to the diagonal; $s(x, y, \sigma)$ is a semi-classical symbol of order $m = \dim_{\mathbb{C}} M$.

The phase

When the Kähler metric ω is real analytic, the phase ψ is constructed from the Kähler potential $\varphi(z)$ of ω_0 by

$$\psi(\mathbf{x},\mathbf{y}) = \psi((\mathbf{z},\lambda),(\mathbf{w},\mu)) = 1 - \lambda \bar{\mu} e^{\varphi(\mathbf{z},\bar{\mathbf{w}})}$$
(2)

where $\varphi(z, \bar{w})$ is the analytic extension of $\varphi(z) = \varphi(z, \bar{z})$ into the complexification $M \times \bar{M}$ of M. Also,

$$s \sim \sum_{n=0}^{\infty} \sigma^{m-n} s_n(x, y)$$
 (3)

is an analytic symbol in the sense of Boutet de Monvel. Finally, the remainder term $\hat{R}(x, y)$ is real analytic in a neighborhood of the diagonal. If ω is only C^{∞} then $\psi(z, w)$ is defined by an almost-analytic extension and the remainder R is C^{∞} .

Partial Bergman kernels

Our interest is not in the full Bergman kernel but in the partial Bergman kernels (PBK's): Partial Bergman kernels

$$\Pi_{k,\mathcal{S}_k}: L^2(M,L^k) \to \mathcal{S}_k \subset H^0(M,L^k)$$
(4)

are orthogonal projections onto proper subspaces S_k of the holomorphic sections of L^k . For certain sequences S_k of subspaces, the partial density of states $k^{-m}\prod_{k,S_k}(z,z)$ has an asymptotic expansion as $k \to \infty$ which roughly gives the probability density that a quantum state from S_k is at the point z. If $\{s_{k,j}\}$ is an ONB for S_k , then

$$\Pi_{k,\mathcal{S}_k}(z,z) = \sum_{j=1}^{\dim \mathcal{S}_k} |s_{k,j}(z)|_{h^k}^2.$$

Here and henceforth, the value on the diagonal means the metric contraction.

Sections vanishing to high order on a hypersurface

A motivating example: Let $Y \subset M$ be a complex hypersurface (divisor). Let

$$\mathcal{S}_{k,t}^{Y} := H^0(X, \mathcal{O}(L^k) \otimes \mathcal{I}_{Y}^{tk}),$$

holomorphic sections vanishing to order tk on Y. Define the orthogonal projections

$$\Pi_k^{Y,t}(z,w): L^2(X,L^k) \to H^0(X,\mathcal{O}(L^k)\otimes \mathcal{I}_Y^{tk}).$$
(5)

Can one find the asymptotics $\Pi_k^{Y,t}(z,z)$?

It is "obvious" that $\Pi_k^{Y,t}(z,z)$ should be exponentially decaying on Y and in *some* tubular neighborhood of Y. But the details are not known except in special cases (Toric (M, L, h)).

A motivating problem from the QHE

Other examples of Partial Bergman kernels arise in the quantum Hall effect.

Suppose $\Omega \subset M$ is a domain in a kahler manifold M^m of dimension m. We would like to fill it up with quantum states from $H^0(M, L^k)$, with no 'spill-over' into $M \setminus \Omega$. If the states are $\{s_j^k\}_{j=1}^{d_{k,\Omega}}$ then heuristically we want

$$k^{-m}\sum_{j=1}^{d_{k,\Omega}}|s_j^k(z)|_{h^k}\simeq C_mk^m\mathbf{1}_{\Omega}(z).$$

Here, $\mathbf{1}_{\Omega}$ is the characteristic function of Ω . Also, $d_{k,\Omega}$ is the dimension of the relevant subspace.

Of course, this is not literally possible. How close can we come? What does the minimal 'spill-over look like".

Spectral theory of Toeplitz operators

If $\hat{H}_k : H^0(M, L^k) \to H^0(M, L^k)$ is a self-adjoint Toeplitz operator such as $\hat{H}_k = \prod_{h^k} H \prod_{h^k}$, then one might define S_k to be a spectral subspace of \hat{H}_k . In terms of

$$\hat{H}_k s_{k,j} = \mu_{k,j} s_{k,j}$$

one may define

$$\mathcal{S}_k = \operatorname{Span}\{s_{k,j} : \mu_{k,j} \in [E_1, E_2]\}.$$

The corresponding partial Bergman kernel is the orthogonal projection

$$\Pi_{k,\mathcal{S}_k} = \mathbf{1}_{[E_1,E_2]}(\hat{H}_k)$$

to this subspace.

The answer in the S^1 -invariant 1D case

The 'limit shape' of the interface is an complete Gaussian:

There is an *allowed region* where the PBK is almost 1 and the *forbidden region* where it is almost zero. The transition region has width $O(\frac{1}{\sqrt{k}})$. This picture is in most standard texts on QHE.

Toric Kähler manifolds

The simplest partial Bergman kernels arise from toric Kähler manifolds M^m . Then $H^0(M, L^k)$ is spanned by monomials z^{α} where $\alpha \in kP \cap \mathbb{Z}^m$ is a lattice point in the kth dilate of the polytope P corresponding to M, i.e. the image

$$\mu: M \to P$$

under the moment map. Subspaces may be defined by choosing sub-polytopes $P' \subset P$ which are 'Delzant'. The corresponding z^{α} 's vanish to high order on the divisor at infinity.

- Shiffman -Zelditch (2004) In the allowed region A := µ⁻¹(P'), the PBK asymptotics are the same as for the full Bergman kernel. In the forbidden region F := M\µ⁻¹(P'), they are exponentially decaying. The decay rate is an explicit Agmon type function b_{P'}.
- ► (2014) Pokorny-Singer: Generalized the allowed asymptotics of (Sh-Z) to any toric Kahler manifold and toric divisor. Main novelty: distributional expansion of PBK on ∂A.

Density of states for a toric sub-polytope PBK

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure : Gaussian decay from allowed to forbidden

S¹-invariant Kähler manifolds

Ross-Singer generalized the toric results to Kähler manifolds with a holomorphic Hamiltonian S^1 symmetry , with a hypersurface $Y \subset M^{S^1}$ contained in the fixed point set (critical point set of the Hamiltonian).

- ► (2014) Ross-Singer: Discovered the incomplete Gaussian interface asymptotics for S¹-invariant (M, L, h) for PBK's onto sections vanishing to order tk on an S¹-invariant hypersurface Y.
- (2016) (Peng Zhou-S. Z.) General Hamiltonian S¹-invariant (M, L, h) with no assumptions on fixed point set; exponential decay rate and interface asymptotics.

Many of the results (in particular the interface asymptotics) are valid for any Hamiltonian (in progress).

Filling domains with quantum states

If the domain Ω has the form $E_1 \leq H \leq E_2$ for some $H: M \to \mathbb{R}$, then the eigensections (i.e. partial Bergman kernel) for the spectral subspace of \hat{H}_k with eigenvalues in $[E_1, E_2]$ will fill it.

Another approach is to study the spectral theory of $\Pi_{h^k} \mathbf{1}_{\Omega} \Pi_{h^k}$. R. Berman proved a Szego limit theorem for the eigenvalues of this operator. No results yet on interface asymptotics.

Shiffman-S.Z. and P. Zhou- S.Z. use the Boutet-de-Monvel-Sjostrand parametrix to obtain simple and accurate results.

Hamiltonian-holomorphic S^1 actions on Kaehler manifolds

We now describe the results in the S^1 case. The setting consists of a positive Hermitian holomorphic line bundle $(L, h) \rightarrow (M, \omega, J)$ over a Kähler manifold of complex dimension *m* carrying a Hamiltonian holomorphic S^1 action

$$\exp i\theta \ \xi_H: \mathbb{T} \times M \to M, \quad \iota_{\xi_H} \omega = dH$$

where $H: M \to \mathbb{R}$ is the Hamiltonian. Here $\mathbb{T} = S^1$.

Holomorphic means that for each θ , exp $i\theta \xi_H$ is a holomorphic map. It follows that each is an isometry of $g(X, Y) = \omega(X, JY)$.

It was observed by T. Frankel that a holomorphic S^1 action is always Hamiltonian if its fixed point set is non-empty.

Model examples on \mathbb{C}^{m+1} .

Standard S^1 actions on \mathbb{C}^{m+1} have the form

$$e^{i heta} \cdot [Z_0, \ldots, Z_m] = [e^{ib_0 heta}Z_0, \ldots, e^{ib_m heta}Z_m], \quad b_j \in \mathbb{Z}.$$

Extreme cases:

(i)
$$e^{i\theta} \cdot [Z_0, \ldots, Z_m] = [e^{i\theta}Z_0, Z_1, \ldots, Z_m]$$
, Hamiltonian $|\mathbf{Z}_0|^2$,

with fixed point manifold $Z_0 = 0$;

(*ii*)
$$e^{i\theta} \cdot [Z_0, \dots, Z_m] = [e^{i\theta}Z_0, \dots, e^{i\theta}Z_m]$$
, Hamiltonian $\sum_{j=1}^m |Z_j|^2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with isolated fixed point $\{0\}$.

Model examples on \mathbb{CP}^m

Standard S^1 actions on \mathbb{CP}^m arise from subgroups $S^1 \subset SU(m+1)$ of the form

$$e^{i heta} \cdot [Z_0,\ldots,Z_m] = [Z_0,e^{ib_1 heta}Z_1,\ldots,e^{ib_m heta}Z_m], \quad b_j \in \mathbb{Z}.$$

With no loss of generality it is assumed that $b_0 = 0$. When $b_j \neq b_k$ when $j \neq k$, the action has m + 1 isolated fixed points, $P_j = [0, \ldots, 0, z_j, 0, \ldots, 0]$. The weights at P_j are $\{b_j - b_i\}_{j \neq i}$. The Hamiltonian (moment map) is

$$H_{\vec{b}}([Z_0:\cdots:Z_m]) = \frac{b_1|Z_1|^2 + \cdots + b_m|Z_m|^2}{|Z|^2}$$

S^1 invariant Projective hypersurfaces

Example studied by F. Kirwan: the cubic hypersurface $X \subset \mathbb{CP}^4$,

$$x^3 + y^3 + z^3 = u^2 v,$$

and let \mathbb{C}^* act on X via

$$t \cdot [x, y, z, u, v] = [t^{-1}x, t^{-1}y, t^{-1}z, t^{-3}u, t^{3}v].$$

Then $X^{\mathbb{T}}$ has three fixed point components,

$$\begin{split} F_1 &= \{ [0,0,0,1,0] \}, \quad F_2 = \{ [x,y,z,0,0] : x^3 + y^3 + z^3 = 0 \}, \\ F_3 &= \{ [0,0,0,0,1] \}, \end{split}$$

of which two (F_1, F_3) are isolated fixed points and F_2 is a hypersurface in X, i.e. a curve. The point P = [0, 0, 0, 0, 1] is singular.

Another setting of S^1 invariant situation is ruled surfaces.

Let M be a Kähler manifold and let $L \to M$ be a holomorphic line bundle. L carries a natural \mathbb{C}^* action. Projectivize each line $L_z \to \mathbb{P}L_z \simeq \mathbb{CP}^1$ to get $\mathbb{P}L$. It still carries a \mathbb{C}^* action. Equip the \mathbb{CP}^1 bundle with an S^1 invariant metric. Then the total space is an S^1 -invariant kahler manifold with fixed point components $\simeq M$ corresponding to $0, \infty$ on \mathbb{CP}^1 .

Linearization (quantization) of the S^1 action

Let *h* be the Hermitian metric with $i\partial\bar{\partial}\log h = \omega$. If $c_1(L) = [\omega]$, then the Hamiltonian S^1 action preserves (L, h) and can be 'quantized' or linearized to give a representation of \mathbb{T} on the spaces $H^0(X, L^k)$ of holomorphic sections of the tensor powers L^k . The infinitesimal generator acts on a section by

$$\xi \cdot \boldsymbol{s} = (\nabla_{\xi} + 2\pi i \boldsymbol{k} \boldsymbol{H}) \boldsymbol{s} =: \hat{\boldsymbol{H}}_{\boldsymbol{k}} \boldsymbol{s}.$$
(6)

Here, ∇ is the Chern connection.

(6) may be integrated to define a unitary representation of $\mathbb T$

$$U_k(\theta) = e^{ik\theta\hat{H}_k} : \mathbb{T} \times H^0(M, L^k) \to H^0(M, L^k)$$

on , equipped with the L^2 norm ${\rm Hilb}_{h^k}$ induced by the Hermitian metric h.

Weight decomposition of holomorphic sections and equivariant Bergman kernels

Define the weight spaces by

$$V_k(j) = \{s \in H^0(M, L^k) : U_k(\theta)s = e^{ij\theta}s\}$$

= $\{s \in H^0(M, L^k) : \hat{H}_k s = \frac{j}{k}s\}.$ (7)

The associated eigenspace projections

$$\Pi_{k,j}(z,w): H^0(M,L^k) \to V_k(j) \tag{8}$$

are called "equivariant Bergman kernels". They have been studied in detail by Shiffman-S.Z. (toric), X.Ma-W. Zhang (general compact G), R. Paoletti (general G).

Partial Bergman kernels

The Hamiltonian is a Bott-Morse function $H: M \to [E_-, E_+]$ where $E_{\pm} = \max / \min H$. Let $P \subset (E_-, E_+)$ be a proper closed interval. Define the corresponding subspace

$$\mathcal{H}_{k,P} := \bigoplus_{j:\frac{j}{k} \in P} V_k(j) \tag{9}$$

and partial Bergman kernels

$$\Pi_{|kP}(z,w) := \sum_{j:\frac{j}{k} \in P} \Pi_{k,j}(z,w).$$
(10)

The main problem is to relate the asymptotic properties of $\Pi_{|kP}(z, w)$ to the geometry of $H^{-1}(P)$.

Allowed region, forbidden region and the interface

Define the allowed, resp. forbidden regions by

$$\mathcal{A}_P := \{z \in M : H(z) \in P\}, \quad \mathcal{F}_P := M \setminus \mathcal{A}_P.$$

The main idea is that $\Pi_{|kP}(z, z)$ has standard asymptotics in the allowed region \mathcal{A}_P and exponentially decaying asymptotics in the forbidden region \mathcal{F}_P . The *interface* is

$$\partial \mathcal{A}_P = \partial \mathcal{F}_P.$$

In a special case, Ross-Singer found the scaling limit of $\Pi_{kP}(z, z)$ for z in a transition region between them near the 'interface'.

Allowed vs Forbidden

Allowed: the flat top; Forbidden the flat bottom.

Complexified \mathbb{C}^* -action and Agmon distance

The complexification of the holomorphic Hamiltonian $\ensuremath{\mathbb{T}}$ action is denoted by

$$\tau: \mathbb{C}^* \times M \to M, \ \tau^*_{e^{i\varphi}} \omega = \omega.$$
(11)

The \mathbb{C}^* action is the combined Hamilton flow– gradient flow of the Hamiltonian $H = \mu$ generating the S^1 action.

The exponentially decaying asymptotics in the forbidden region is governed by the 'action' $b_E(z)$ from z to $H^{-1}(E)$. We define b_E by

$$b_E(z) = -E\tau_E(z) + \int_0^{\tau_E(z)} \left[H(e^{-\sigma/2} \cdot z) \right] \cdot d\sigma .$$
 (12)

The integral is over the gradient flow line from z to $H^{-1}(E)$.

Asymptotics of Equivariant Bergman kernels

The following asymptotics are quite simple in the S^1 case:

THEOREM
If
$$|\frac{j}{k} - E| \leq \frac{C \log k}{\sqrt{k}}$$
, then
 $\Pi_{k,j}(z,z) \sim k^{n-1} \frac{1}{\sqrt{\det \varphi_{\rho\rho}''}} A_0 + o(k^{n-1}), \quad z \in H^{-1}(E).$
For $z \notin E$, let $e^{-\tau_E(z)/2} \cdot z \in H^{-1}(E)$. Then,
 $\Pi_{k,j}(z,z) \sim k^{n-1} e^{-kb_E(z)} \frac{1}{\sqrt{\det \varphi_{\rho\rho}''}} A_0 + o(k^{n-1}), \quad z \in H^{-1}(E).$

Here, b_E is the action integral over the gradient line of H from z to $H^{-1}(E)$.

Very simple: just use equivariance. Generalizations to non-abelian groups: X. Ma, R. Paoletti.

Partial Bergman kernel asymptotics

Let $P = [E, H_{\text{max}}]$ where H_{max} is the maximum value of H or the form $[H_{\min}, E]$ where H_{\min} is the minimum value. It is only notationally more complicated to consider intervals $[E_1, E_2]$ with $E_1 > H_{\min}, E_2 < H_{\max}$.

THEOREM

The density of states of the partial Bergman kernel is given by the asymptotic formulas:

$$\Pi_{|kP}(z,z) \sim \begin{cases} c_0 + c_1 k^{-1} + c_2 k^{-2} + \cdots, & \text{for } z \in H^{-1}(P), \\ k^{-m} e^{-kb_E(z)} \left[c_0(z) + O(k^{-1}) \right], & \text{for } z \in X_1^+, \end{cases}$$

where $c_0 \in C^{\infty}(X_1^+)$, and b_E is defined in (12). Furthermore, the remainder estimates are uniform on compact subsets of the basin X_1^+ of attraction of the minimum.

Smoothed partial Bergman kernel asymptotics

The smoothed out interval sums have the form, with $\rho \in \mathcal{S}(\mathbb{R})$,

$$\sum_{j} \rho(\frac{j}{k} - E) \Pi_{k,j}(z,z) = \int_{\mathbb{R}} \hat{\rho}(t) e^{-iE t} \Pi_{k}(e^{it/k}z,z) dt.$$
(13)

THEOREM

$$\sum_{j} \rho(\frac{j}{k} - E)) \Pi_{k,j}(z, z) \sim \begin{cases} c_0 + c_1 k^{-1} + c_2 k^{-2} + \cdots, z \in H^{-1}(P), \\ k^{-m} e^{-kb_E(z)} \left[c_0(z) + O(k^{-1}) \right], z \in X_1^+, \end{cases}$$

where the remainder estimates are uniform on compact subsets of the big stratum X_1^+ (big Morse cell).

Interface Asymptotics

The interface asymptotics at a level *E* involve all of the individual weight Bergman kernels (8) where $|\frac{j}{k} - E| < \frac{C \log k}{k}$.

THEOREM

For z so that $\sqrt{k}(H(z) - \epsilon)$ is bounded, , $k^{-n}\Pi_{|kP}(z, z)$ has a distributional expansion on X whose leading order term is

$$k^{-n}\Pi_{|kP}(z,z) = \frac{1}{\sqrt{2\pi|\xi_H(z)|^2}} \int_{-\infty}^{\sqrt{k}(H(z)-\epsilon)} e^{-\frac{t^2}{2|\xi_H(z)|^2}} dt + O(k^{-\frac{1}{2}}).$$

 ξ_H = Hamilton v.f. of H.

Smoothed interface asymptotics

The smoothed out interface sums have the form, with $\rho \in \mathcal{S}(\mathbb{R})$,

$$\sum_{j} \rho(\sqrt{k}(\frac{j}{k} - E)) \Pi_{k,j}(z_0 + \frac{u}{\sqrt{k}}, z_0 + \frac{u}{\sqrt{k}})$$

$$= \int_{\mathbb{R}} \hat{\rho}(t) e^{-iE\sqrt{k}t} \Pi_k(e^{it/\sqrt{k}}z, z) dt.$$
(14)

THEOREM Let $\mu(z_0) = E$. Then,

$$\begin{split} \sum_{j} \rho(\sqrt{k}(\frac{j}{k}-E)) \Pi_{k,j}(z_0+\frac{u}{\sqrt{k}},z_0+\frac{u}{\sqrt{k}}) \\ = \int_{\mathbb{R}} \hat{\rho}(t) e^{itE\varphi_{\rho}'(z_0)u-\varphi_{\rho\rho}''(z_0)t^2} dt + O(\frac{1}{\sqrt{k}}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Sketch of proof

Using the Bouet-de-Monvel-Sjostrand parametrix,

$$\sum_{j} f(\sqrt{k}(\frac{j}{k}-E))\Pi_{k,j}(z,z) = \int_{\mathbb{R}} \hat{f}(t)e^{-iE\sqrt{k}t}\Pi_{k}(e^{it/\sqrt{k}}z,z)dt$$

$$=k^{m}\int_{-\infty}^{\infty}\hat{f}(t)e^{-it(\sqrt{k}E)}e^{k\psi(e^{it/(2\sqrt{k})}\cdot z,e^{-it/(2\sqrt{k})}\cdot z)-k\varphi(z)}A_{k}(e^{it/2\sqrt{k}}z,z)\frac{dt}{2\pi}$$

$$+k^m \int_{-\infty}^{\infty} \hat{f}(t) e^{-it(\sqrt{k}E)} R_k(e^{it/2\sqrt{k}}z,z) \frac{dt}{2\pi}$$

Since $R_k \in k^{-\infty}C^{\infty}(M \times M)$, the second term is $O(k^{-\infty})$. We note that $t \to \prod_k (e^{it/\sqrt{k}}z, z)$ is $2\pi\sqrt{k}$ -periodic (similarly for the parametrix and remainder terms), so the integrals converge when $\hat{f} \in L^1(\mathbb{R}^d)$.

Continuation

Let

$$\Psi(\tau,z) = - au(\sqrt{k}E) + k\psi(e^{\tau/2\sqrt{k}}\cdot z, e^{\overline{\tau}/2\sqrt{k}}\cdot z) - k\varphi(z),$$

so the phase is $\Psi(it)$. If $\varphi(z)$ is real analytic, then $\Psi(\tau)$ is holomorphic when $\Im(\tau)$ is small enough. If φ is only smooth, then $\Psi(\tau)$ is an almost analytic extension of $\Psi|_{\mathbb{R}}$. If $z = e^{\beta/(\sqrt{k})}z_0$ with $H(z_0) = E$. Then as $k \to \infty$,

$$\Psi(\tau, e^{\beta/(\sqrt{k})}z_0) = -\tau(\sqrt{k}E) + k((\psi(e^{(\tau/2+\beta)/\sqrt{k}} \cdot z_0, e^{(\bar{\tau}/2+\beta)/\sqrt{k}} \cdot z_0))$$

$$-arphi(e^{eta/\sqrt{k}}\cdot z_0) = rac{1}{2}((au/2+eta)^2-eta^2)\partial_
ho^2arphi(z_0)+g_3(z, au,eta),$$

where

$$g_3 = O(k^{-1/2}(|\beta|^3 + |\tau|^3)).$$

Completion of proof

=

If $\hat{f} \in C_c(\mathbb{R})$, using the Plancherel theorem and the Taylor expansion above, the PBK is

$$\begin{split} k^{m} \int_{-\infty}^{\infty} \hat{f}(t) \left[e^{\frac{1}{2}((it/2+\beta)^{2}-\beta^{2})\partial_{\rho}^{2}\varphi(z_{0})}e^{g_{3}}dt \right] (1+O(k^{-1})) \\ &= k^{m} \int_{-\infty}^{\infty} \hat{f}(t) \left[e^{\frac{1}{2}((it/2+\beta)^{2}-\beta^{2})\partial_{\rho}^{2}\varphi(z_{0})}dt \right] + O(k^{m-\frac{1}{2}})) \\ k^{m} \int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{\infty} e^{-itx+\frac{1}{2}((it/2+\beta)^{2}-\beta^{2})\partial_{\rho}^{2}\varphi(z_{0})}dt \right] \frac{dx}{2\pi} + O(k^{m-\frac{1}{2}})) \\ &= k^{m} \int_{-\infty}^{\infty} f(x) \sqrt{\frac{2}{\pi \partial_{\rho}^{2}\varphi(z_{0})}} e^{-\frac{(2x-\beta \partial_{\rho}^{2}\varphi(z_{0}))^{2}}{2\partial_{\rho}^{2}\varphi(z_{0})}} dx + O(k^{m-1/2})) \end{split}$$